গুণনীয়ক উপপাদ্য (Factor Theorem)

Submitted by arpita pramanik on Sat, 08/29/2020 - 23:35

গুণনীয়ক উপপাদ্য (Factor Theorem)

যদি f(x) কোনো একটি বহুপদী সংখ্যামালা যার মাত্রা n(n1) এবং a যেকোনো একটি বাস্তব সংখ্যা হয় , তাহলে 

  • ( x-a ) , f(x) এর একটি উৎপাদক হবে , যদি f(a) = 0 হয় 
  • বিপরীতক্রমে f(a) = 0 হবে , যদি ( x-a ) , f(x) এর একটি উৎপাদক হয় 

প্রমাণ : ভাগশেষ উপপাদ্য থেকে বলতে পারি, একটি বহুপদী সংখ্যামালা f(x) কে ( x-a ) দিয়ে ভাগ করলে একটি বহুপদী সংখ্যামালা q(x) পাবো যাতে  f(x)=(xa)q(x)+f(a)

(i) যদি f(a) = 0 হয় , তবে f(x)=(xa)q(x) পাবো । 

অতএব ( x-a ) , f(x) এর একটি উৎপাদক হবে । 

(ii) আবার যদি ( x-a ) , f(x) এর একটি উৎপাদক হয় তাহলে একটি বহুপদী সংখ্যামালা g(x) পাবো যাতে f(x)=(xa)g(x) হবে । 

x = a বসিয়ে পাবো f(a)=(aa)g(a)=0 ( প্রমাণিত )

 

উদাহরণ : k এর মান কত হলে (3x2) , 15x2kx14 এর একটি উৎপাদক হবে ?

মনে করি f(x)=15x2kx14

এখন 3x2=0x=23

অর্থাৎ (3x2) রৈখিক বহুপদী সংখ্যামালার শূন্য 23

যেহেতু (3x2) , 15x2kx14 এর একটি উৎপাদক 

অতএব f(23)=0

অতএব 

15(23)2k(23)14=015×4923k14=020323k14=020422k=02k=22k=11

অতএব k = -11 হলে ,  (3x2) , 15x2kx14 এর একটি উৎপাদক হবে । 

 

উদাহরণ : n , যেকোনো যুগ্ম ধনাত্মক পূর্ণ সংখ্যা হলে দেখাই যে xnyn বহুপদী সংখ্যামালাটির একটি উৎপাদক হবে x+y ।

মনে করি  xnyn কে x+y দ্বারা ভাগ করলে ভাগফল Q এবং x বর্জিত ভাগশেষ R 

ভাজ্য = ভাজক × ভাগফল +ভাগশেষ 

অতএব xnyn=(x+y)Q+R ( এটি একটি অভেদ )

যেহেতু R ভাগশেষটি x বর্জিত , সুতরাং x এর মান যাই হোকনা কেন তাতে R এর মান পরিবর্তিত হবেনা। তাই উপরের অভেদে x এর জায়গায় (-y) লিখে পাই 

(y)nyn=(y+y)Q+Rynyn=RR=0

( যেহেতু n যুগ্ম ধনাত্মক পূর্ণ সংখ্যা তাই (y)n=yn )

সুতরাং xnyn বহুপদী সংখ্যামালাটির একটি উৎপাদক হবে x+y যখন n একটি যুগ্ম ধনাত্মক পূর্ণ সংখ্যা । 

*****

Comments

Related Items

সামন্তরিকের পঞ্চম উপপাদ্য

পঞ্চম উপপাদ্য : সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে।

সামন্তরিকের চতুর্থ উপপাদ্য

কোনো চতুর্ভুজের বিপরীত কোণগুলি সমান হলে , চতুর্ভুজটি একটি সামান্তরিক হবে।

সামন্তরিকের তৃতীয় উপপাদ্য

কোনো চতুর্ভুজের বিপরীত বাহুগুলি সমান হলে , চতুর্ভুজটি একটি সামান্তরিক হবে।

সামন্তরিকের দ্বিতীয় উপপাদ্য

কোনো সামান্তরিকের (i) প্রতিটি কর্ণ সামান্তরিককে দুটি সর্বসম ত্রিভুজে বিভক্ত করে (ii) বিপরীত বাহুগুলির দৈর্ঘ্য সামন। (iii) বিপরীত কোণ গুলি মানে সমান।

সামন্তরিকের প্রথম উপপাদ্য

কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামান্তরিক হবে।