সামন্তরিকের চতুর্থ উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:44

সামন্তরিকের চতুর্থ উপপাদ্য (Parallelogram Theorem)

কোনো চতুর্ভুজের বিপরীত কোণগুলি সমান হলে , চতুর্ভুজটি একটি সামন্তরিক হবে । 

 

প্রমাণ:

পারলে মনে করি ABCD চতুর্ভুজের ABC=ADC এবং BCD=DAB

আমাদের প্রমাণ করতে হবে ABCD চতুর্ভুজটি একটি সামন্তরিক হবে। 

প্রমাণ : যেহেতু চতুর্ভুজের চারটি কোণের যোগফল 360 

অতএব ABCD চতুর্ভুজের 

ABC+BCD+CDA+DAB=360ABC+BCD+ABC+BCD=360

( যেহেতু ABC=ADC এবং BCD=DAB )

অতএব 

2ABC+2BCD=3602(ABC+BCD)=360ABC+BCD=180

অতএব AB ।। DC ( যেহেতু BC ছেদকের একই পাশে অন্তঃস্থ কোণের যোগফল 180 )

আবার যেহেতু ABC+BCD=180

ADC+BCD=180 ( যেহেতু ABC=ADC )

এখানেও CD ছেদকের একই পাশে অন্তঃস্থ কোণের যোগফল 180

অতএব AD ।। BC 

অতএব ABCD একটি সামন্তরিক। 

 

প্রয়োগ : কোনো সামন্তরিকের চারটি কোণের সমদ্বিখণ্ডকগুলি পরস্পর মিলিত হয়ে একটি আয়তক্ষেত্র গঠন করবে। 

পারল মনে করি ABCD একটি সামন্তরিকের A,B,C এবং D কোণের সমদ্বিখণ্ডক গুলি যথাক্রমে AP , BR , CR ও DP পরস্পর মিলিত হয়ে PQRS চতুর্ভুজ গঠন করেছে। 

আমাদের প্রমাণ করতে হবে PQRS চতুর্ভুজটি হল একটি আয়তক্ষেত্র 

প্রমাণ : ABCD সামন্তরিকের AB ।। DC এবং AD হল ভেদক 

অতএব 

BAD+ADC=18012BAD+12ADC=12×180PAD+PDA=90

সুতরাং ত্রিভুজ APD এর PAD+PDA=90

অতএব APD=18090=90

অনুরূপে প্রমাণ করা যায় BRC=90,ASB=90=RSP এবং CQD=90=RQP

অতএব PQRS চতুর্ভুজের PSR=PQR=90 এবং SRQ=SPQ=90

যেহেতু PQRS চতুর্ভুজের বিপরীত বাহুগুলি সমান , সুতরাং PQRS চতুর্ভুজটি হল একটি সামন্তরিক । 

আবার PQRS সামন্তরিকের প্রত্যেকটি কোণের মান 90 , সুতরাং PQRS সামন্তরিকটি হল একটি আয়তক্ষেত্র । 

*****

Comments

Related Items

রৈখিক সহ সমীকরণ

রৈখিক সহ সমীকরণ (Linear Simultaneous Equations)

সূচনা (Introduction)

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান ( Prove and Solution of Transversal and Mid-Point Theorem Related Problems)

লেখচিত্রের সাহায্যে যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়

মনে করি P ও Q দুটি বিন্দু উহাদের স্থানাঙ্ক হল যথাক্রমে [EQUATION-1] এবং [EQUATION-2] . P ও Q যোগ করা হল এখন আমাদের PQ এর দূরত্ব বা দৈর্ঘ্য নির্ণয় করতে হবে।

লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়

মনে করি XOX' ও YOY' সরলরেখাদ্বয় লম্বভাবে পরস্পরকে O বিন্দুতে ছেদ করেছে। XOX' ও YOY' এইদুটি স্থানাঙ্ক রেখা বা Co-Ordinate axes এবং O হল মূলবিন্দু ( Origin ) ।

লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান

মনে করি 3x + 4y = 25 এবং 4x - 3y = 0 দুটি সমীকরণ এদেরকে আমাদের সমাধান করতে হবে। দেখা যাচ্ছে দুটি সরলরেখার একটি সাধারণ বিন্দু হল (3,4) . অর্থাৎ দুটি সরলরেখা পরস্পরকে (3,4) বিন্দুতে ছেদ করেছে।