সামন্তরিকের ষষ্ঠ উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:55

সামন্তরিকের ষষ্ঠ উপপাদ্য (Parallelogram Theorem)

কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করলে চতুর্ভুজটিকে সামন্তরিক বলে । 

 

প্রমাণ:

পৰ মনে করি ABCD চতুর্ভুজের O হল AC ও BD কর্ণের মধ্যবিন্দু । 

অর্থাৎ AO = CO এবং BO = DO  

আমাদের প্রমাণ করতে হবে ABCD একটি সামান্তরিক । 

প্রমাণ : ত্রিভুজ AOB এবং ত্রিভুজ COD এর 

AO = CO  

BO = DO 

[tex]\angle AOB[/tex] = বিপ্রতীপ কোণ [tex]\angle DOC[/tex]

অতএব ত্রিভুজ AOB [tex] \cong [/tex] ত্রিভুজ COD

অতএব AB = DC ( এরা সর্বসম ত্রিভুজের অনুরূপ বাহু )

[tex]\angle BAO = \angle DCO[/tex] কিন্তু এরা একান্তর কোণ 

অতএব AB ।। DC 

অর্থাৎ চতুর্ভুজটির একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল । 

অতএব অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে । 

অতএব ABCD একটি সামন্তরিক। 

 

প্রয়োগ : ABCD একটি সামন্তরিকের AC ও BD কর্ণ দুটি O বিন্দুতে মিলিত হয়েছে । AC কর্ণের উপর P ও R দুটি এমন বিন্দু যাতে AP = CR হয়। প্রমাণ করতে হবে চতুর্ভুজ PBRD একটি সামন্তরিক । 

পৰ ABCD একটি সামন্তরিকের AC ও BD কর্ণ দুটি O বিন্দুতে মিলিত হয়েছে। AC কর্ণের উপর P ও R দুটি এমন বিন্দু যাতে AP = CR হয় ।

আমাদের প্রমাণ করতে হবে চতুর্ভুজ PBRD একটি সামন্তরিক। 

প্রমাণ : যেহেতু ABCD একটি সামন্তরিক , সুতরাং তার কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করবে । 

অর্থাৎ , OA = OC এবং OB = OD হবে । 

এখন OP =OA - AP 

অতএব OP = OC - CR ( যেহেতু OA = OC এবং AP = CR )

অতএব OP = OR 

সুতরাং PBRD চতুর্ভুজের OP = OR এবং OB = OD অর্থাৎ PBRD চতুর্ভুজের PR এবং BD দুটি কর্ণদ্বয় পরস্পরকে O বিন্দুতে সমদ্বিখন্ডিত করেছে । 

সুতরাং PBRD একটি সামন্তরিক । 

 

ABCD একটি সামন্তরিকের DA ও DC বাহুকে যথাক্রমে P ও Q বিন্দুতে এমন ভাবে বাড়ানো হল যাতে AP = DA এবং CQ = DC হয়। প্রমাণ করতে হবে যে P , B , Q তিনটি সমরেখ । 

পৰ

ABCD একটি সামান্তরিকের DA ও DC বাহুকে যথাক্রমে P ও Q বিন্দুতে এমন ভাবে বাড়ানো হল যাতে AP = DA এবং CQ = DC হয় ।

আমাদের প্রমাণ করতে হবে যে P , B , Q তিনটি সমরেখ । 

অঙ্কন : P , B ; B , Q এবং C , Q যুক্ত করলাম । 

প্রমাণ : যেহেতু ABCD একটি সামান্তরিক তাই DA = CB এবং DA ।। CB .

দেওয়া আছে AP = DA 

অতএব AP = CB এবং AP ।। CB 

অতএব চতুর্ভুজ APBC একটি সামন্তরিক । 

সুতরাং PB ।। AC ..........(i)

আবার ABCD একটি সামন্তরিক তাই DC = AB এবং DC ।। AB .

দেওয়া আছে CQ = DC

অতএব CQ =  AB এবং CQ ।। AB 

অতএব চতুর্ভুজ ABQC একটি সামন্তরিক । 

সুতরাং BQ ।। AC .............(ii)

(i) ও (ii) থেকে পাই 

PB ।। BQ 

আবার যেহেতু B বিন্দুটি দুটি সরলরেখাতেই আছে সুতরাং PB ও BQ  একই সরলরেখাতেই আছে । সুতরাং P , B ও Q বিন্দু তিনটি সমরেখ । 

*****

Comments

Related Items

রৈখিক সহ সমীকরণ

রৈখিক সহ সমীকরণ (Linear Simultaneous Equations)

সূচনা (Introduction)

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান ( Prove and Solution of Transversal and Mid-Point Theorem Related Problems)

লেখচিত্রের সাহায্যে যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়

মনে করি P ও Q দুটি বিন্দু উহাদের স্থানাঙ্ক হল যথাক্রমে [EQUATION-1] এবং [EQUATION-2] . P ও Q যোগ করা হল এখন আমাদের PQ এর দূরত্ব বা দৈর্ঘ্য নির্ণয় করতে হবে।

লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়

মনে করি XOX' ও YOY' সরলরেখাদ্বয় লম্বভাবে পরস্পরকে O বিন্দুতে ছেদ করেছে। XOX' ও YOY' এইদুটি স্থানাঙ্ক রেখা বা Co-Ordinate axes এবং O হল মূলবিন্দু ( Origin ) ।

লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান

মনে করি 3x + 4y = 25 এবং 4x - 3y = 0 দুটি সমীকরণ এদেরকে আমাদের সমাধান করতে হবে। দেখা যাচ্ছে দুটি সরলরেখার একটি সাধারণ বিন্দু হল (3,4) . অর্থাৎ দুটি সরলরেখা পরস্পরকে (3,4) বিন্দুতে ছেদ করেছে।