বৃত্ত, বৃত্তের পরিধি ও ক্ষেত্রফল

Submitted by arpita pramanik on Wed, 02/16/2011 - 01:06

বৃত্ত (Circle) Circle

বৃত্তের সূত্রাবলি:

কোনো বৃত্তের ব্যাসার্ধ r একক হলে
(i) বৃত্তের ব্যাস = 2r একক

(ii) বৃত্তের পরিধি =2π× বৃত্তের ব্যাসার্ধ একক
=2πr একক অথবা, π× ব্যাস একক

(iii) বৃত্তের ক্ষেত্রফল = (π× (বৃত্তের ব্যাসার্ধ)2  বর্গ একক
                         =12πr2বর্গ একক

(iv) অর্ধবৃত্তাকার ক্ষেত্রের পরিসীমা 367r একক

(v) অর্ধবৃত্তাকার ক্ষেত্রের ক্ষেত্রফল 12πr2 বর্গ একক

(π এর মান ধরা হয় 227)

যদি দুটি এক কেন্দ্রীয় বৃত্তের ব্যাসার্ধ যথাক্রমে R ও r ; (R > r)একক হয়, তবে তাদের পরিধি দুটি দ্বারা সীমাবদ্ধ বৃত্তবলয়ের ক্ষেত্রফল=π(R2r2) বর্গ একক ।

*****

Comments

Related Items

রৈখিক সহ সমীকরণ

রৈখিক সহ সমীকরণ (Linear Simultaneous Equations)

সূচনা (Introduction)

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান ( Prove and Solution of Transversal and Mid-Point Theorem Related Problems)

লেখচিত্রের সাহায্যে যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়

মনে করি P ও Q দুটি বিন্দু উহাদের স্থানাঙ্ক হল যথাক্রমে [EQUATION-1] এবং [EQUATION-2] . P ও Q যোগ করা হল এখন আমাদের PQ এর দূরত্ব বা দৈর্ঘ্য নির্ণয় করতে হবে।

লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়

মনে করি XOX' ও YOY' সরলরেখাদ্বয় লম্বভাবে পরস্পরকে O বিন্দুতে ছেদ করেছে। XOX' ও YOY' এইদুটি স্থানাঙ্ক রেখা বা Co-Ordinate axes এবং O হল মূলবিন্দু ( Origin ) ।

লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান

মনে করি 3x + 4y = 25 এবং 4x - 3y = 0 দুটি সমীকরণ এদেরকে আমাদের সমাধান করতে হবে। দেখা যাচ্ছে দুটি সরলরেখার একটি সাধারণ বিন্দু হল (3,4) . অর্থাৎ দুটি সরলরেখা পরস্পরকে (3,4) বিন্দুতে ছেদ করেছে।