সামন্তরিকের দ্বিতীয় উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:21

সামন্তরিকের দ্বিতীয় উপপাদ্য (Parallelogram Theorem)

কোনো সামন্তরিকের 

(i) প্রতিটি কর্ণ সামন্তরিককে দুটি সর্বসম ত্রিভুজে বিভক্ত করে 

(ii) বিপরীত বাহুগুলির দৈর্ঘ্য সামন । 

(iii) বিপরীত কোণ গুলি মানে সমান । 

 

প্রমাণ:

পৰ

মনে করি ABCD একটি সামন্তরিক অর্থাৎ AD ।। BC এবং AB ।। DC . AC কর্ণ সামন্তরিককে ত্রিভুজ ABC এবং ত্রিভুজ ACD দুটি ত্রিভুজে বিভক্ত করেছে । প্রমাণ করতে হবে যে 

(i) ত্রিভুজ ABC  [tex] \cong [/tex] ত্রিভুজ ACD 

(ii) AB = DC এবং AD = BC

(iii) [tex]\angle ABC = \angle ADC[/tex] এবং [tex]\angle BAD = \angle BCD[/tex]

প্রমাণ : ত্রিভুজ ABC এবং ত্রিভুজ ACD এর মধ্যে 

[tex]\angle BAC = [/tex]একান্তর [tex]\angle ACD[/tex] ( যেহেতু AB ।। DC এবং AC হল ছেদক )

AC সাধারণ বাহু 

[tex]\angle ACB = [/tex] একান্তর [tex]\angle CAD[/tex] ( যেহেতু AD ।। BC এবং AC হল ছেদক )

অতএব ত্রিভুজ ABC [tex] \cong [/tex] ত্রিভুজ ADC 

অতএব AB = DC ও AD = BC ( সর্বসম ত্রিভুজের অনুরূপ বাহু )

আবার [tex]\angle ABC = \angle ADC[/tex] ( সর্বসম ত্রিভুজের অনুরূপ কোণ )

[tex]\begin{array}{l}
\angle BAC + \angle CAD = \angle ACB + \angle ACD\\
 \Rightarrow \angle BAD = \angle BCD
\end{array}[/tex]

*****

Comments

Related Items

রৈখিক সহ সমীকরণ

রৈখিক সহ সমীকরণ (Linear Simultaneous Equations)

সূচনা (Introduction)

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান ( Prove and Solution of Transversal and Mid-Point Theorem Related Problems)

লেখচিত্রের সাহায্যে যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়

মনে করি P ও Q দুটি বিন্দু উহাদের স্থানাঙ্ক হল যথাক্রমে [EQUATION-1] এবং [EQUATION-2] . P ও Q যোগ করা হল এখন আমাদের PQ এর দূরত্ব বা দৈর্ঘ্য নির্ণয় করতে হবে।

লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়

মনে করি XOX' ও YOY' সরলরেখাদ্বয় লম্বভাবে পরস্পরকে O বিন্দুতে ছেদ করেছে। XOX' ও YOY' এইদুটি স্থানাঙ্ক রেখা বা Co-Ordinate axes এবং O হল মূলবিন্দু ( Origin ) ।

লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান

মনে করি 3x + 4y = 25 এবং 4x - 3y = 0 দুটি সমীকরণ এদেরকে আমাদের সমাধান করতে হবে। দেখা যাচ্ছে দুটি সরলরেখার একটি সাধারণ বিন্দু হল (3,4) . অর্থাৎ দুটি সরলরেখা পরস্পরকে (3,4) বিন্দুতে ছেদ করেছে।