লেখচিত্রের সাহায্যে যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়

Submitted by arpita pramanik on Mon, 08/31/2020 - 21:39

লেখচিত্রের সাহায্যে যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয় 

মনে করি P ও Q দুটি বিন্দু উহাদের স্থানাঙ্ক হল যথাক্রমে [tex]\left( {{x_1},{y_1}} \right)[/tex] এবং [tex]\left( {{x_2},{y_2}} \right)[/tex] . P ও Q যোগ করা হল এখন আমাদের PQ এর দূরত্ব বা দৈর্ঘ্য নির্ণয় করতে হবে । Distance Between Two Points

এখন P ও Q বিন্দু থেকে OX এর উপরে PN ও QM দুটি লম্ব অঙ্কন করা হল এবং P বিন্দু থেকে QM এর উপর PR লম্ব টানা হল । 

এখন PR ।। OX ( যেহেতু PR এবং OX দুটোই QM এর লম্ব )

অতএব PNMR একটি আয়তক্ষেত্র । 

অতএব PR = NM = OM - ON = [tex]{x_2} - {x_1}[/tex] ( যেহেতু [tex]ON = {x_1}[/tex] এবং [tex]OM = {x_2}[/tex] )

QR = QM - RM = QM - PN = [tex]{y_2} - {y_1}[/tex] ( যেহেতু [tex]PN = {y_1}[/tex] এবং [tex]QM = {y_2}[/tex] )

এখন PQR হল সমকোণী ত্রিভুজ। অতএব পিথাগোরাসের উপপাদ্য প্রয়োগ করে পাই  

[tex]\begin{array}{l}
P{Q^2} = P{R^2} + Q{R^2}\\
 \Rightarrow PQ = \sqrt {P{R^2} + Q{R^2}} \\
 = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} 
\end{array}[/tex]

সুতরাং [tex]P\left( {{x_1},{y_1}} \right)[/tex] এবং [tex]Q\left( {{x_2},{y_2}} \right)[/tex] দুটি বিন্দুর মধ্যবর্তী দূরত্ব হল [tex]\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} [/tex] একক। যেহেতু দূরত্ব কখনো ঋণাত্মক হয়না সেই কারণেই সবসময় ধনাত্মক মান ধরা হবে । 

*****

Comments

Related Items

রৈখিক সহ সমীকরণ

রৈখিক সহ সমীকরণ (Linear Simultaneous Equations)

সূচনা (Introduction)

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান

ভেদক ও মধ্যবিন্দু সংক্রান্ত অংকের সমাধান ( Prove and Solution of Transversal and Mid-Point Theorem Related Problems)

লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়

মনে করি XOX' ও YOY' সরলরেখাদ্বয় লম্বভাবে পরস্পরকে O বিন্দুতে ছেদ করেছে। XOX' ও YOY' এইদুটি স্থানাঙ্ক রেখা বা Co-Ordinate axes এবং O হল মূলবিন্দু ( Origin ) ।

লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান

মনে করি 3x + 4y = 25 এবং 4x - 3y = 0 দুটি সমীকরণ এদেরকে আমাদের সমাধান করতে হবে। দেখা যাচ্ছে দুটি সরলরেখার একটি সাধারণ বিন্দু হল (3,4) . অর্থাৎ দুটি সরলরেখা পরস্পরকে (3,4) বিন্দুতে ছেদ করেছে।

বিভিন্ন প্রকার রাশিমালা

বীজগাণিতিক রাশিমালা ( Algebraical Expression ) দুইপ্রকার সরল রাশি ( Simple Expression ) বা এক পদীয় ( Monomial ) জটিল রাশি ( Complex Expression ), জটিল রাশি ( Complex Expression ) আবার তিন প্রকার