সামন্তরিকের ধর্ম

Submitted by arpita pramanik on Wed, 02/16/2011 - 00:43

সামন্তরিকের ধর্ম (Properties of Parallelogram)

আমরা বিভিন্ন রকম চতুর্ভুজের আকার সম্পর্কে জেনেছি । যেমন বর্গক্ষেত্র , আয়তক্ষেত্র , রম্বস , কাইট , সামন্তরিক ও ট্রাপিজিয়াম। আবার কোনো চতুর্ভুজকে এই সমস্ত চতুর্ভুজের আকারে মধ্যে আনা সম্ভব হয়না । তাদেরকে চতুর্ভুজ নাম দেওয়া হয়েছে। এই অধ্যায়ে আমরা সামন্তরিকের ধর্ম সম্পর্কে আলোচনা করব । 

সামন্তরিক ( Parallelogram ) : যে চতুর্ভুজের বিপরীত বাহুগুলি পরস্পর সমান্তরাল তাকে সামান্তরিক বলে । 

পৰ

উপরে চিত্র গুলি সবগুলি সামন্তরিক । এদের প্রত্যেকের বিপরীত বাহুগুলি পরস্পর সমান্তরাল । 

যে সামন্তরিকের একটি কোণ সমকোণ তাকে আয়তক্ষেত্র বলে । 

যে আয়তক্ষেত্রের একজোড়া সন্নিহিত বাহুর দৈর্ঘ্য সমান হলে তাকে বর্গক্ষেত্র বলে । 

যে সামন্তরিকের একজোড়া সন্নিহিত বাহুর দৈর্ঘ্য সমান হলে তাকে রম্বস বলে । 

আবার রম্বসের একটি কোণ সমকোণ হলে বর্গক্ষেত্র বলে । 

সুতরাং বর্গক্ষেত্র , আয়তক্ষেত্র , রম্বস এই সবই হল সামন্তরিক । 

 

সামন্তরিকের উপপাদ্য (Parallelogram Theorem)

প্রথম উপপাদ্য : কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামন্তরিক হবে।  [ প্রমাণ ]

দ্বিতীয় উপপাদ্য : কোনো সামন্তরিকের  (i) প্রতিটি কর্ণ সামন্তরিককে দুটি সর্বসম ত্রিভুজে বিভক্ত করে , (ii) বিপরীত বাহুগুলির দৈর্ঘ্য সামন। , (iii) বিপরীত কোণ গুলি মানে সমান।  [ প্রমাণ ]

তৃতীয় উপপাদ্য : কোনো চতুর্ভুজের বিপরীত বাহুগুলি সমান হলে , চতুর্ভুজটি একটি সামন্তরিক হবে। [ প্রমাণ ]

চতুর্থ উপপাদ্য : কোনো চতুর্ভুজের বিপরীত কোণগুলি সমান হলে , চতুর্ভুজটি একটি সামন্তরিক হবে। [ প্রমাণ ]

পঞ্চম উপপাদ্য : সামন্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে। [ প্রমাণ ]

ষষ্ঠ উপপাদ্য : কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করলে চতুর্ভুজটিকে সামন্তরিক বলে। [ প্রমাণ ]

*****

Comments

Related Items

বিভিন্ন প্রকার রাশিমালা

বীজগাণিতিক রাশিমালা ( Algebraical Expression ) দুইপ্রকার সরল রাশি ( Simple Expression ) বা এক পদীয় ( Monomial ) জটিল রাশি ( Complex Expression ), জটিল রাশি ( Complex Expression ) আবার তিন প্রকার

বহুপদী সংখ্যামালার ধর্ম

দুটি বহুপদীয় রাশির যোগফল , বিয়োগফল ও গুণফল সর্বদা বহুপদীয় রাশি হয়। যদি কোনো বহুপদী রাশিমালা অপেক্ষক f(x) এমন হয় যে f(a) = 0 তখন অপেক্ষকটি ( x-a ) দ্বারা বিভাজ্য হবে। অর্থাৎ বহুপদী সংখ্যামালা সর্বদাই তার উৎপাদক দ্বারা বিভাজ্য হবে।

ভাগশেষ উপপাদ্য

f(x) একটি বহুপদী সংখ্যামালা যার মাত্রা Equation1 এবং a যেকোনো একটি বাস্তব সংখ্যা। f(x) কে ( x-a ) দ্বারা ভাগ করলে ভাগশেষ হবে f(a) .

গুণনীয়ক উপপাদ্য (Factor Theorem)

যদি f(x) কোনো একটি বহুপদী সংখ্যামালা যার মাত্রা Equation 1 এবং a যেকোনো একটি বাস্তব সংখ্যা হয় , তাহলে

বহুপদী সংখ্যামালা সংক্রান্ত অংকের সমাধান

বহুপদী সংখ্যামালা সংক্রান্ত অংকের সমাধান (Solution of Polynomials )