বহুপদী সংখ্যামালা (Polynomials)
বহুপদী সংখ্যামালা সম্পর্কে জানতে হলে আমাদের তার আগে কয়েকটি বিষয় সম্পর্কে জানতে হবে ।
- সহগ ( Coefficient )
- পদ ( term ) এবং রাশি ( Expression )
সহগ (Coefficient) : সহগ হল কোনো বীজগাণিতিক রাশির উৎপাদক। কোনো বর্ণ বা অক্ষর দিয়ে সহগ গঠিত হলে তাকে বর্ণমূলক সহগ (Literal Coefficient) বলে । আবার কেবলমাত্র সংখ্যা দিয়ে সহগ গঠিত হলে তাকে বলে সংখ্যামূলক সহগ (Numerical Coefficient) .
যেমন [tex]2ab{x^2}[/tex] বীজগাণিতিক পদটিতে 2 হল [tex]ab{x^2}[/tex] এর সংখ্যামূলক সহগ । 2a হল [tex]b{x^2}[/tex] এর সহগ এবং 2ab হল [tex]{x^2}[/tex] এর সহগ । আবার bcx পদটিতে bc হল x এর বর্ণমূলক সহগ ।
সহগ সাধারণত কোনো পদের বাঁদিকে লেখা হয়, যদি কোনো পদে সহগের উল্লেখ না থাকে, তবে সহগ হিসাবে 1 ধরতে হয় । যেমন [tex]{x^3}[/tex] এর সহগ 1 কিংবা [tex]{a^2}[/tex] এর সহগ হল 1 ।
পদ (Term) এবং রাশি (Expression) : পদ হল একটি সংখ্যা বা চলরাশি বা একাধিক সংখ্যা এবং চলরাশির গুণিতক । এক বা একাধিক পদ যদি যোগ বিয়োগ চিহ্ন দ্বারা মিলিত হয় তাকে রাশি বলে ।
যেমন [tex]{a^2} + ab - c[/tex] এই রাশিতে বিভিন্ন পদগুলি হল [tex]{a^2},ab,c[/tex] এরা যথাক্রমে যোগ এবং বিয়োগের মাধ্যমে [tex]{a^2} + ab - c[/tex] রাশিটি গঠন করেছে । আবার [tex]4{x^3} + 5xy - 15x{y^2}[/tex] এই রাশির বিভিন্ন পদগুলি হল [tex]4{x^3},5xy,15x{y^2}[/tex] এরা যথাক্রমে যোগ এবং বিয়োগের মাধ্যমে [tex]4{x^3} + 5xy - 15x{y^2}[/tex] রাশিটি গঠন করেছে ।
বহুপদী সংখ্যামালা (Polynomials) : সকল বীজগাণিতিক সংখ্যামালা যাদের চলের সূচক অখন্ড সংখ্যা তাদের বহুপদী সংখ্যামালা (Polynomials) বলে ।
যেমন [tex]{x^2},{x^3} + 8,{x^7} + 5x + 8[/tex] ইত্যাদি এরা হল বহুপদী সংখ্যামালা কারণ এদের চল x এর সূচক গুলি অখন্ড। কিন্তু [tex]\sqrt x + 1,3{x^2} + \sqrt y ,{x^2} - \sqrt[3]{y}[/tex] ইত্যাদি বহুপদী সংখ্যামালা নয় কারণ এদের x এবং y চলের সূচক সর্বদা অখন্ড নয় ।
*****