সামন্তরিকের প্রথম উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 20:56

সামন্তরিকের প্রথম উপপাদ্য (Parallelogram Theorem)

কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামন্তরিক হবে । 

 

প্রমাণ:

পৰ

 মনে করি ABCD একটি চতুর্ভুজ , এর AD = BC এবং AD ।। BC 

 

আমাদের প্রমাণ করতে হবে

(i) AB = DC এবং AB ।। DC 

(ii) ABCD একটি সামন্তরিক 

অঙ্কন : AC কর্ণ টানলাম। 

প্রমাণ : ত্রিভুজ ADC ও ত্রিভুজ ABC এর মধ্যে 

AD = BC 

AC সাধারণ বাহু 

[tex]\angle DAC = [/tex] একান্তর [tex]\angle ACB[/tex] ( যেহেতু AD ।। BC এবং AC হল ছেদক )

অতএব ত্রিভুজ ADC [tex] \cong [/tex] ত্রিভুজ ABC 

AB = DC এবং [tex]\angle BAC = \angle ACD[/tex] কিন্তু এরা একান্তর কোণ । 

সুতরাং AB ।। DC 

এখন ABCD চতুর্ভুজের AD ।। BC এবং AB ।। DC অর্থাৎ বিপরীত বাহু গুলি পরস্পর সমান্তরাল 

সুতরাং ABCD চতুর্ভুজটি হল একটি সামন্তরিক । 

 

প্রয়োগ : PQRS সামন্তরিকের PS ও QR এর মধ্যবিন্দু হল যথাক্রমে A ও B . P , B ; Q , A ; R , A এবং B , S যোগ করা হল । PB ও QA পরস্পরকে C বিন্দুতে এবং RS ও RB পরস্পরকে D বিন্দুতে ছেদ করেছে । প্রমাণ করতে হবে যে (i) AQBS একটি সামন্তরিক , (ii) চতুর্ভুজ PBRA একটি সামন্তরিক , (iii) চতুর্ভুজ ACBD একটি সামন্তরিক । 

পৰ প্রমাণ : PQRS একটি সামন্তরিক। সুতরাং PS ।। QR এবং PS = QR 

অতএব [tex]\frac{1}{2}PS = \frac{1}{2}QR[/tex]

সুতরাং PA = BR এবং AS = QB 

অতএব AQBS চতুর্ভুজের AS ।। QB ( যেহেতু PS ।। QR )

এবং AS ।। QB 

অতএব AQBS চতুর্ভুজটি একটি সামন্তরিক 

একই ভাবে প্রমাণ করা যায় PBRA চতুর্ভুজটি একটি সামন্তরিক 

ACBD চতুর্ভুজের AC ।। DB ( যেহেতু AQBS একটি সামন্তরিক )

BC ।। DA ( যেহেতু PBRA একটি সামন্তরিক )

অতএব ABCD একটি সামন্তরিক ।

*****

Comments

Related Items

ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য

ত্রিভুজ, সমবাহু ত্রিভুজ, ট্রাপিজিয়াম, চতুর্ভুজের বাহুগুলির ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য প্রমাণ ও তার প্রয়োগ

সামন্তরিকের ধর্ম

যে চতুর্ভুজের বিপরীত বাহুগুলি পরস্পর সমান্তরাল তাকে সামান্তরিক বলে। যে সামান্তরিকের একটি কোণ সমকোণ তাকে আয়তক্ষেত্র বলে। যে আয়তক্ষেত্রের একজোড়া সন্নিহিত বাহুর দৈর্ঘ্য সমান হলে তাকে বর্গক্ষেত্র বলে।

জ্যামিতি (Geometry)

লেখচিত্র ( Graph ), সামান্তরিকের ধর্ম (Properties of Parallelogram), স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয় ( Co-ordinate Geometry : Distance formula ), ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য ( Transversal and Mid-Point Theorem )

বাস্তব সংখ্যা (Real Number)

মূলদ সংখ্যার সাথে অমূলদ সংখ্যা গুলিকে একত্রিত করে যে সকল সংখ্যা পাওয়া যায় , তাদের বাস্তব সংখ্যা বলে। বাস্তব সংখ্যার দলকে R চিহ্ন দ্বারা প্রকাশ করা হয়।