বহুপদী সংখ্যামালা (Polynomials)

Submitted by arpita pramanik on Fri, 04/22/2011 - 11:32

বহুপদী সংখ্যামালা (Polynomials)

বহুপদী সংখ্যামালা সম্পর্কে জানতে হলে আমাদের তার আগে কয়েকটি বিষয় সম্পর্কে জানতে হবে । 

  1. সহগ ( Coefficient )
  2. পদ ( term ) এবং রাশি ( Expression )

সহগ (Coefficient) : সহগ হল কোনো বীজগাণিতিক রাশির উৎপাদক। কোনো বর্ণ বা অক্ষর দিয়ে সহগ গঠিত হলে তাকে বর্ণমূলক সহগ (Literal Coefficient) বলে । আবার কেবলমাত্র সংখ্যা দিয়ে সহগ গঠিত হলে তাকে বলে সংখ্যামূলক সহগ (Numerical Coefficient) .

যেমন 2abx2 বীজগাণিতিক পদটিতে 2 হল abx2 এর সংখ্যামূলক সহগ । 2a হল bx2 এর সহগ এবং 2ab হল x2 এর সহগ । আবার bcx পদটিতে bc হল x এর বর্ণমূলক সহগ । 

সহগ সাধারণত কোনো পদের বাঁদিকে লেখা হয়, যদি কোনো পদে সহগের উল্লেখ না থাকে, তবে সহগ হিসাবে 1 ধরতে হয় । যেমন x3 এর সহগ 1 কিংবা a2 এর সহগ হল 1 ।

পদ (Term) এবং রাশি (Expression) : পদ হল একটি সংখ্যা বা চলরাশি বা একাধিক সংখ্যা এবং চলরাশির গুণিতক । এক বা একাধিক পদ যদি যোগ বিয়োগ চিহ্ন দ্বারা মিলিত হয় তাকে রাশি বলে । 

যেমন a2+abc এই রাশিতে বিভিন্ন পদগুলি হল a2,ab,c এরা যথাক্রমে যোগ এবং বিয়োগের মাধ্যমে  a2+abc রাশিটি গঠন করেছে । আবার 4x3+5xy15xy2 এই রাশির বিভিন্ন পদগুলি হল 4x3,5xy,15xy2 এরা যথাক্রমে যোগ এবং বিয়োগের মাধ্যমে 4x3+5xy15xy2 রাশিটি গঠন করেছে ।

 

বহুপদী সংখ্যামালা (Polynomials) : সকল বীজগাণিতিক সংখ্যামালা যাদের চলের সূচক অখন্ড সংখ্যা তাদের বহুপদী সংখ্যামালা (Polynomials) বলে ।

যেমন x2,x3+8,x7+5x+8 ইত্যাদি এরা হল বহুপদী সংখ্যামালা কারণ এদের চল x এর সূচক গুলি অখন্ড। কিন্তু x+1,3x2+y,x23y ইত্যাদি বহুপদী সংখ্যামালা নয় কারণ এদের x এবং y চলের সূচক সর্বদা অখন্ড নয় । 

*****

Comments

Related Items

সামন্তরিকের প্রথম উপপাদ্য

কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামান্তরিক হবে।

উৎপাদকে বিশ্লেষণ (Factorisation)

মনে করি x রাশির যদি সর্বোচ্চ ঘাত 2 হয় সেই রাশিকে দ্বিঘাত রাশি বলে। যেমন Equation1 এই রাশির সর্বোচ্চ ঘাত 2 . এর তিনটি পদের সোহাগ যথাক্রমে 1 , 3 , 2. এবার এই মধ্যে সোহাগ 3 কে বিশ্লেষণ করে কিরূপে রাশিটিকে উৎপাদকে বিশ্লেষণ

স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয়

বীজগণিতের সাহায্যে বিভিন্ন জ্যামিতিক আকারের ধারণা গড়ে ওঠাকে স্থানাঙ্ক জ্যামিতি ( Co-ordinate Geometry ) বলা হয়। অর্থাৎ স্থানাঙ্ক জ্যামিতিতে বীজগণিতের সাহায্যে জ্যামিতির ধারণা করতে পারি তাই স্থানাঙ্ক জ্যামিতি ব্যাপকতরভাবে বিজ্ঞানের বিভিন্ন শাখায় ব্যবহার করা হয়।

সরল সুদ কষার উদাহরণ ও সমাধান

সমস্যাটিতে তিনটি বিষয় আছে বলে এখানে বহুরাশিক পদ্ধতি প্রয়োগ করতে হবে । যথা (i) আসল ও মোট সুদের মধ্যে এবং (ii) সময় ও মোট সুদের মধ্যে । (i) সময় অপরিবর্তিত আছে ধরে নিলে, আসলের সঙ্গে মোট সুদের সরল সম্পর্ক । এখানে আসল বেড়েছে তাই সুদ বাড়বে অর্থাৎ ভগ্নাংশটি

লাভ-ক্ষতি সংক্রান্ত অঙ্কের সমাধান

লাভ-ক্ষতি সংক্রান্ত অংকের সমাধান (Solution of Profit and Loss ), বিভিন্ন পরীক্ষায় আগত প্রশ্নপত্র আলোচনা করা হলো