সামন্তরিকের তৃতীয় উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:37

সান্তরিকের তৃতীয় উপপাদ্য (Parallelogram Theorem)

কোনো চতুর্ভুজের বিপরীত বাহুগুলি সমান হলে , চতুর্ভুজটি একটি সামন্তরিক হবে । 

 

প্রমাণ:

পৰ মনে করি ABCD একটি চতুর্ভুজ এর AB = DC এবং AD = BC 

আমাদের প্রমাণ করতে হবে ABCD একটি সামন্তরিক 

অঙ্কন : AC কর্ণ টানা হল 

প্রমাণ : ত্রিভুজ ABC ও ত্রিভুজ ADC এর 

AB = DC

 BC = AD 

এবং AC হল সাধারণ বাহু । 

অতএব ত্রিভুজ ABC [tex] \cong [/tex] ত্রিভুজ ADC 

অতএব [tex]\angle BAC = \angle ACD[/tex] কিন্তু এরা একান্তর কোণ । 

অতএব AB ।। DC 

আবার [tex]\angle ACB = \angle CAD[/tex] কিন্তু এরা একান্তর কোণ । 

অতএব AD ।। BC 

অতএব ABCD হল সামান্তরিক । 

 

প্রয়োগ : ABCD আয়তক্ষেত্রের AB , BC , CD ও DA বাহুগুলির উপরে যথাক্রমে E , F , G , H বিন্দুগুলি এমনভাবে অবস্থিত যে AE = CG এবং BF = DH , যুক্তি দিয়ে প্রমাণ করতে হবে যে EFGH একটি সামন্তরিক । 

পারল মনে করি ABCD আয়তক্ষেত্রের AE = CG এবং BF = DH 

প্রমাণ করতে হবে যে EFGH একটি সামন্তরিক। 

প্রমাণ : যেহেতু AD = BC এবং DH = BF 

সুতরাং AD - DH = BC - BF 

অতএব AH = CF 

ত্রিভুজ AEH এবং ত্রিভুজ CGF এর 

AH = CF

AE = CG 

এবং [tex]\angle HAB = \angle FCG = {90^ \circ }[/tex]

অতএব ত্রিভুজ  AEH [tex] \cong [/tex] ত্রিভুজ CGF

সুতরাং EH = FG ( যেহেতু সর্বসম ত্রিভুজের অনুরূপ বাহু )

অনুরূপে প্রমাণ করা যায় EF = HG 

যেহেতু EFGH চতুর্ভুজের EH = FG এবং EF = HG অর্থাৎ দুটি বিপরীত বাহুগুলি পরস্পর সমান । 

অতএব EFGH চতুর্ভুজটি একটি সামন্তরিক । 

*****

Comments

Related Items

বিভিন্ন প্রকার রাশিমালা

বীজগাণিতিক রাশিমালা ( Algebraical Expression ) দুইপ্রকার সরল রাশি ( Simple Expression ) বা এক পদীয় ( Monomial ) জটিল রাশি ( Complex Expression ), জটিল রাশি ( Complex Expression ) আবার তিন প্রকার

বহুপদী সংখ্যামালার ধর্ম

দুটি বহুপদীয় রাশির যোগফল , বিয়োগফল ও গুণফল সর্বদা বহুপদীয় রাশি হয়। যদি কোনো বহুপদী রাশিমালা অপেক্ষক f(x) এমন হয় যে f(a) = 0 তখন অপেক্ষকটি ( x-a ) দ্বারা বিভাজ্য হবে। অর্থাৎ বহুপদী সংখ্যামালা সর্বদাই তার উৎপাদক দ্বারা বিভাজ্য হবে।

ভাগশেষ উপপাদ্য

f(x) একটি বহুপদী সংখ্যামালা যার মাত্রা Equation1 এবং a যেকোনো একটি বাস্তব সংখ্যা। f(x) কে ( x-a ) দ্বারা ভাগ করলে ভাগশেষ হবে f(a) .

গুণনীয়ক উপপাদ্য (Factor Theorem)

যদি f(x) কোনো একটি বহুপদী সংখ্যামালা যার মাত্রা Equation 1 এবং a যেকোনো একটি বাস্তব সংখ্যা হয় , তাহলে

বহুপদী সংখ্যামালা সংক্রান্ত অংকের সমাধান

বহুপদী সংখ্যামালা সংক্রান্ত অংকের সমাধান (Solution of Polynomials )