সামন্তরিকের চতুর্থ উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:44

সামন্তরিকের চতুর্থ উপপাদ্য (Parallelogram Theorem)

কোনো চতুর্ভুজের বিপরীত কোণগুলি সমান হলে , চতুর্ভুজটি একটি সামন্তরিক হবে । 

 

প্রমাণ:

পারলে মনে করি ABCD চতুর্ভুজের [tex]\angle ABC = \angle ADC[/tex] এবং [tex]\angle BCD = \angle DAB[/tex]

আমাদের প্রমাণ করতে হবে ABCD চতুর্ভুজটি একটি সামন্তরিক হবে। 

প্রমাণ : যেহেতু চতুর্ভুজের চারটি কোণের যোগফল [tex]{360^ \circ }[/tex] 

অতএব ABCD চতুর্ভুজের 

[tex]\begin{array}{l}
\angle ABC + \angle BCD + \angle CDA + \angle DAB = {360^ \circ }\\
 \Rightarrow \angle ABC + \angle BCD + \angle ABC + \angle BCD = {360^ \circ }
\end{array}[/tex]

( যেহেতু [tex]\angle ABC = \angle ADC[/tex] এবং [tex]\angle BCD = \angle DAB[/tex] )

অতএব 

[tex]\begin{array}{l}
2\angle ABC + 2\angle BCD = {360^ \circ }\\
 \Rightarrow 2\left( {\angle ABC + \angle BCD} \right) = {360^ \circ }\\
 \Rightarrow \angle ABC + \angle BCD = {180^ \circ }
\end{array}[/tex]

অতএব AB ।। DC ( যেহেতু BC ছেদকের একই পাশে অন্তঃস্থ কোণের যোগফল [tex]{180^ \circ }[/tex] )

আবার যেহেতু [tex]\angle ABC + \angle BCD = {180^ \circ }[/tex]

[tex]\angle ADC + \angle BCD = {180^ \circ }[/tex] ( যেহেতু [tex]\angle ABC = \angle ADC[/tex] )

এখানেও CD ছেদকের একই পাশে অন্তঃস্থ কোণের যোগফল [tex]{180^ \circ }[/tex]

অতএব AD ।। BC 

অতএব ABCD একটি সামন্তরিক। 

 

প্রয়োগ : কোনো সামন্তরিকের চারটি কোণের সমদ্বিখণ্ডকগুলি পরস্পর মিলিত হয়ে একটি আয়তক্ষেত্র গঠন করবে। 

পারল মনে করি ABCD একটি সামন্তরিকের [tex]\angle A,\angle B,\angle C[/tex] এবং [tex]\angle D[/tex] কোণের সমদ্বিখণ্ডক গুলি যথাক্রমে AP , BR , CR ও DP পরস্পর মিলিত হয়ে PQRS চতুর্ভুজ গঠন করেছে। 

আমাদের প্রমাণ করতে হবে PQRS চতুর্ভুজটি হল একটি আয়তক্ষেত্র 

প্রমাণ : ABCD সামন্তরিকের AB ।। DC এবং AD হল ভেদক 

অতএব 

[tex]\begin{array}{l}
\angle BAD + \angle ADC = {180^ \circ }\\
 \Rightarrow \frac{1}{2}\angle BAD + \frac{1}{2}\angle ADC = \frac{1}{2} \times {180^ \circ }\\
 \Rightarrow \angle PAD + \angle PDA = {90^ \circ }
\end{array}[/tex]

সুতরাং ত্রিভুজ APD এর [tex]\angle PAD + \angle PDA = {90^ \circ }[/tex]

অতএব [tex]\angle APD = {180^ \circ } - {90^ \circ } = {90^ \circ }[/tex]

অনুরূপে প্রমাণ করা যায় [tex]\angle BRC = {90^ \circ },\angle ASB = {90^ \circ } = \angle RSP[/tex] এবং [tex]\angle CQD = {90^ \circ } = \angle RQP[/tex]

অতএব PQRS চতুর্ভুজের [tex]\angle PSR = \angle PQR = {90^ \circ }[/tex] এবং [tex]\angle SRQ = \angle SPQ = {90^ \circ }[/tex]

যেহেতু PQRS চতুর্ভুজের বিপরীত বাহুগুলি সমান , সুতরাং PQRS চতুর্ভুজটি হল একটি সামন্তরিক । 

আবার PQRS সামন্তরিকের প্রত্যেকটি কোণের মান [tex]{90^ \circ }[/tex] , সুতরাং PQRS সামন্তরিকটি হল একটি আয়তক্ষেত্র । 

*****

Comments

Related Items

উৎপাদকে বিশ্লেষণ (Factorisation)

মনে করি x রাশির যদি সর্বোচ্চ ঘাত 2 হয় সেই রাশিকে দ্বিঘাত রাশি বলে। যেমন Equation1 এই রাশির সর্বোচ্চ ঘাত 2 . এর তিনটি পদের সোহাগ যথাক্রমে 1 , 3 , 2. এবার এই মধ্যে সোহাগ 3 কে বিশ্লেষণ করে কিরূপে রাশিটিকে উৎপাদকে বিশ্লেষণ

স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয়

বীজগণিতের সাহায্যে বিভিন্ন জ্যামিতিক আকারের ধারণা গড়ে ওঠাকে স্থানাঙ্ক জ্যামিতি ( Co-ordinate Geometry ) বলা হয়। অর্থাৎ স্থানাঙ্ক জ্যামিতিতে বীজগণিতের সাহায্যে জ্যামিতির ধারণা করতে পারি তাই স্থানাঙ্ক জ্যামিতি ব্যাপকতরভাবে বিজ্ঞানের বিভিন্ন শাখায় ব্যবহার করা হয়।

সরল সুদ কষার উদাহরণ ও সমাধান

সমস্যাটিতে তিনটি বিষয় আছে বলে এখানে বহুরাশিক পদ্ধতি প্রয়োগ করতে হবে । যথা (i) আসল ও মোট সুদের মধ্যে এবং (ii) সময় ও মোট সুদের মধ্যে । (i) সময় অপরিবর্তিত আছে ধরে নিলে, আসলের সঙ্গে মোট সুদের সরল সম্পর্ক । এখানে আসল বেড়েছে তাই সুদ বাড়বে অর্থাৎ ভগ্নাংশটি

লাভ-ক্ষতি সংক্রান্ত অঙ্কের সমাধান

লাভ-ক্ষতি সংক্রান্ত অংকের সমাধান (Solution of Profit and Loss ), বিভিন্ন পরীক্ষায় আগত প্রশ্নপত্র আলোচনা করা হলো

বিবিধ ঘনবস্তুসমূহ (Various 3D Figures)

এই অধ্যায়ে আমরা একাধিক ঘনবস্তুর পারস্পরিক সম্পর্কে বিচার করে মিলিতভাবে যে সমস্যাগুলির সম্মুখীন হব, তার সমাধান করা শিখবো । সুবিধার জন্য ওই ঘনবস্তু সম্পর্কিত সূত্রাবলির তালিকা এখানে একসাথে দেওয়া হল ।