সামন্তরিকের চতুর্থ উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:44

সামন্তরিকের চতুর্থ উপপাদ্য (Parallelogram Theorem)

কোনো চতুর্ভুজের বিপরীত কোণগুলি সমান হলে , চতুর্ভুজটি একটি সামন্তরিক হবে । 

 

প্রমাণ:

পারলে মনে করি ABCD চতুর্ভুজের ABC=ADC এবং BCD=DAB

আমাদের প্রমাণ করতে হবে ABCD চতুর্ভুজটি একটি সামন্তরিক হবে। 

প্রমাণ : যেহেতু চতুর্ভুজের চারটি কোণের যোগফল 360 

অতএব ABCD চতুর্ভুজের 

ABC+BCD+CDA+DAB=360ABC+BCD+ABC+BCD=360

( যেহেতু ABC=ADC এবং BCD=DAB )

অতএব 

2ABC+2BCD=3602(ABC+BCD)=360ABC+BCD=180

অতএব AB ।। DC ( যেহেতু BC ছেদকের একই পাশে অন্তঃস্থ কোণের যোগফল 180 )

আবার যেহেতু ABC+BCD=180

ADC+BCD=180 ( যেহেতু ABC=ADC )

এখানেও CD ছেদকের একই পাশে অন্তঃস্থ কোণের যোগফল 180

অতএব AD ।। BC 

অতএব ABCD একটি সামন্তরিক। 

 

প্রয়োগ : কোনো সামন্তরিকের চারটি কোণের সমদ্বিখণ্ডকগুলি পরস্পর মিলিত হয়ে একটি আয়তক্ষেত্র গঠন করবে। 

পারল মনে করি ABCD একটি সামন্তরিকের A,B,C এবং D কোণের সমদ্বিখণ্ডক গুলি যথাক্রমে AP , BR , CR ও DP পরস্পর মিলিত হয়ে PQRS চতুর্ভুজ গঠন করেছে। 

আমাদের প্রমাণ করতে হবে PQRS চতুর্ভুজটি হল একটি আয়তক্ষেত্র 

প্রমাণ : ABCD সামন্তরিকের AB ।। DC এবং AD হল ভেদক 

অতএব 

BAD+ADC=18012BAD+12ADC=12×180PAD+PDA=90

সুতরাং ত্রিভুজ APD এর PAD+PDA=90

অতএব APD=18090=90

অনুরূপে প্রমাণ করা যায় BRC=90,ASB=90=RSP এবং CQD=90=RQP

অতএব PQRS চতুর্ভুজের PSR=PQR=90 এবং SRQ=SPQ=90

যেহেতু PQRS চতুর্ভুজের বিপরীত বাহুগুলি সমান , সুতরাং PQRS চতুর্ভুজটি হল একটি সামন্তরিক । 

আবার PQRS সামন্তরিকের প্রত্যেকটি কোণের মান 90 , সুতরাং PQRS সামন্তরিকটি হল একটি আয়তক্ষেত্র । 

*****

Comments

Related Items

সামন্তরিকের ষষ্ঠ উপপাদ্য

কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করলে চতুর্ভুজটিকে সামান্তরিক বলে।

সামন্তরিকের পঞ্চম উপপাদ্য

পঞ্চম উপপাদ্য : সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে।

সামন্তরিকের তৃতীয় উপপাদ্য

কোনো চতুর্ভুজের বিপরীত বাহুগুলি সমান হলে , চতুর্ভুজটি একটি সামান্তরিক হবে।

সামন্তরিকের দ্বিতীয় উপপাদ্য

কোনো সামান্তরিকের (i) প্রতিটি কর্ণ সামান্তরিককে দুটি সর্বসম ত্রিভুজে বিভক্ত করে (ii) বিপরীত বাহুগুলির দৈর্ঘ্য সামন। (iii) বিপরীত কোণ গুলি মানে সমান।

সামন্তরিকের প্রথম উপপাদ্য

কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামান্তরিক হবে।