বহুপদী সংখ্যামালা (Polynomials)

Submitted by arpita pramanik on Fri, 04/22/2011 - 11:32

বহুপদী সংখ্যামালা (Polynomials)

বহুপদী সংখ্যামালা সম্পর্কে জানতে হলে আমাদের তার আগে কয়েকটি বিষয় সম্পর্কে জানতে হবে । 

  1. সহগ ( Coefficient )
  2. পদ ( term ) এবং রাশি ( Expression )

সহগ (Coefficient) : সহগ হল কোনো বীজগাণিতিক রাশির উৎপাদক। কোনো বর্ণ বা অক্ষর দিয়ে সহগ গঠিত হলে তাকে বর্ণমূলক সহগ (Literal Coefficient) বলে । আবার কেবলমাত্র সংখ্যা দিয়ে সহগ গঠিত হলে তাকে বলে সংখ্যামূলক সহগ (Numerical Coefficient) .

যেমন [tex]2ab{x^2}[/tex] বীজগাণিতিক পদটিতে 2 হল [tex]ab{x^2}[/tex] এর সংখ্যামূলক সহগ । 2a হল [tex]b{x^2}[/tex] এর সহগ এবং 2ab হল [tex]{x^2}[/tex] এর সহগ । আবার bcx পদটিতে bc হল x এর বর্ণমূলক সহগ । 

সহগ সাধারণত কোনো পদের বাঁদিকে লেখা হয়, যদি কোনো পদে সহগের উল্লেখ না থাকে, তবে সহগ হিসাবে 1 ধরতে হয় । যেমন [tex]{x^3}[/tex] এর সহগ 1 কিংবা [tex]{a^2}[/tex] এর সহগ হল 1 ।

পদ (Term) এবং রাশি (Expression) : পদ হল একটি সংখ্যা বা চলরাশি বা একাধিক সংখ্যা এবং চলরাশির গুণিতক । এক বা একাধিক পদ যদি যোগ বিয়োগ চিহ্ন দ্বারা মিলিত হয় তাকে রাশি বলে । 

যেমন [tex]{a^2} + ab - c[/tex] এই রাশিতে বিভিন্ন পদগুলি হল [tex]{a^2},ab,c[/tex] এরা যথাক্রমে যোগ এবং বিয়োগের মাধ্যমে  [tex]{a^2} + ab - c[/tex] রাশিটি গঠন করেছে । আবার [tex]4{x^3} + 5xy - 15x{y^2}[/tex] এই রাশির বিভিন্ন পদগুলি হল [tex]4{x^3},5xy,15x{y^2}[/tex] এরা যথাক্রমে যোগ এবং বিয়োগের মাধ্যমে [tex]4{x^3} + 5xy - 15x{y^2}[/tex] রাশিটি গঠন করেছে ।

 

বহুপদী সংখ্যামালা (Polynomials) : সকল বীজগাণিতিক সংখ্যামালা যাদের চলের সূচক অখন্ড সংখ্যা তাদের বহুপদী সংখ্যামালা (Polynomials) বলে ।

যেমন [tex]{x^2},{x^3} + 8,{x^7} + 5x + 8[/tex] ইত্যাদি এরা হল বহুপদী সংখ্যামালা কারণ এদের চল x এর সূচক গুলি অখন্ড। কিন্তু [tex]\sqrt x  + 1,3{x^2} + \sqrt y ,{x^2} - \sqrt[3]{y}[/tex] ইত্যাদি বহুপদী সংখ্যামালা নয় কারণ এদের x এবং y চলের সূচক সর্বদা অখন্ড নয় । 

*****

Comments

Related Items

জ্যামিতি (Geometry)

লেখচিত্র ( Graph ), সামান্তরিকের ধর্ম (Properties of Parallelogram), স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয় ( Co-ordinate Geometry : Distance formula ), ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য ( Transversal and Mid-Point Theorem )

বাস্তব সংখ্যা (Real Number)

মূলদ সংখ্যার সাথে অমূলদ সংখ্যা গুলিকে একত্রিত করে যে সকল সংখ্যা পাওয়া যায় , তাদের বাস্তব সংখ্যা বলে। বাস্তব সংখ্যার দলকে R চিহ্ন দ্বারা প্রকাশ করা হয়।

লেখচিত্র (Graph)

লেখচিত্র বলতে কি বোঝায় এবং ইহার প্রয়োজনীয়তা সম্মন্ধে তাহাদের স্পষ্ট ধারণা থাকা আবশ্যক। প্রাত্যহিক জীবনে লেখচিত্রের ব্যবহার অপরিহার্য। রোগীর তাপমাত্রা হ্রাস বৃদ্ধি , শিল্প প্রতিষ্ঠানে উৎপাদন হার , দ্রব্যমূলের হ্রাস বৃদ্ধি ইত্যাদি বহু তথ্য

বীজগণিত - পূর্বপাঠের পুনরালোচনা

পূর্বপাঠের পুনরালোচনা - চিহ্ন সংক্রান্ত সূত্র (Formula of Sign) , সূচক নিয়মাবলী (Law of Indices), উৎপাদক ও সমাধান সংক্রান্ত নিয়মাবলী (Some Laws of Factor and Solution), বিভিন্ন সূত্রাবলি (Different Formula)