সূচকের সংক্ষিপ্তকরণ (Summary of indices)

Submitted by arpita pramanik on Thu, 08/27/2020 - 17:56

সূচকের সংক্ষিপ্তকরণ ( Summary of indices)

a ও b এর মান শূন্য না হলে m ও n এর যে কোনো বাস্তব মানের জন্য সূচকের নিম্নলিখিত সূত্রাবলি হল ।

1. [tex]{a^m} \cdot {a^n} = {a^{m + n}}[/tex]

2. [tex]{a^m} \div {a^n} = \frac{{{a^m}}}{{{a^n}}} = {a^{m - n}}[/tex]

3. [tex]{\left( {{a^m}} \right)^n} = {a^{mn}}[/tex]

4. [tex]{\left( {ab} \right)^m} = {a^m} \cdot {b^m}[/tex]

5. [tex]{\left( {\frac{a}{b}} \right)^m} = \frac{{{a^m}}}{{{b^m}}}[/tex]

6. [tex]{a^0} = 1[/tex]

7. [tex]{a^{ - n}} = \frac{1}{{{a^n}}}[/tex]

8. [tex]{a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}[/tex]

9. [tex]{a^m} = {b^m}[/tex] হলে [tex]a = b[/tex] হবে [tex]\left( {m \ne 0} \right)[/tex]

10. [tex]{a^m} = {a^n}[/tex] হলে [tex]m = n[/tex] হবে [tex]\left( {a \ne 0, \pm 1} \right)[/tex]

 

 

 

Comments

Related Items

জটিল রাশির বর্গমূল নির্ণয় ( Square Root of Complex Numbers)

1 এর ঘনমূল নির্ণয় (To find the Cube Roots of Unity), 1 এর ঘনমূলের তিনটি ধর্ম (Three Properties of Cube Root of Unity), 1 এর অবাস্তব ঘনমূল দুটি একটি অন্য টির বর্গ , 1 এর ঘনমূল তিনটির সমষ্টি শূন্য হয়

জটিল রাশির সংক্ষিপ্তকরণ ( Complex Numbers Summary )

(1) দুটি বাস্তব রাশি x এবং y এর ক্রমযুগলকে (x , y) যদি x + iy আকারে প্রকাশ করা হয়, (2) দুটি জটিল রাশিকে একে অন্যটির প্রতিযোগী বা অনুবন্দি জটিল রাশি বলা হয়। (3) দুটি জটিল রাশির যোগফল , বিয়োগফল , গুণফল ও ভাগফলকে X + iY আকারে প্রকাশ করা যায়। যেখানে X , Y বাস্তব ।

বাস্তব সংখ্যা (Real Number)

সূচনা ( Introduction ), সংখ্যা (Number), স্বাভাবিক সংখ্যা (Natural Number), পূর্ণসংখ্যা বা অখন্ড সংখ্যা (Integers), মূলদ সংখ্যা (Rational Numbers), শূন্য দ্বারা ভাগ (Division by Zero)

সীমা ( Limit )

স্পষ্টত x এর মান 1 না হয়ে 1 এর খুব কাছাকাছি হলে f(x) এর মান 2 এর খুব নিকটবর্তী হয়। এই পর্যবেক্ষন থেকে গণিতবিদগণ সসীম ধারণার ( concept of limit ) অবতারণা করেন। বস্তুত সীমা নির্ধারণ এমন একটি প্রক্রিয়া যার মাধ্যমে অপেক্ষকের অসংজ্ঞাত

বাস্তব চলের অপেক্ষক ( Function of Real Variable )

বাস্তব চলের অপেক্ষক ( Function of Real Variable ), একমান বিশিষ্ট ও বহুমান বিশিষ্ট অপেক্ষক ( Single valued and Many valued functions ), অপেক্ষকের শ্রেণীবিভাগ ( Classification of Functions ), অপেক্ষকের কয়েকটি বৈশিষ্ট্য ( Some Feature of Functions )