সূচক সংক্রান্ত সমীকরণ ও অভেদ

Submitted by arpita pramanik on Thu, 08/27/2020 - 18:30

সূচক সংক্রান্ত সমীকরণ ও অভেদ [Equations and Identities Involving Indices]

1) যখন a, m, n বাস্তব সংখ্যা [tex]{a^m} = {a^n}[/tex] হলে [tex]m = n[/tex] যখন  [tex]a \ne 0, \pm 1[/tex]

[tex]\begin{array}{l}
{a^m} = {a^n}\\
 \Rightarrow \frac{{{a^m}}}{{{a^n}}} = 1\\
 \Rightarrow {a^{m - n}} = {a^0}\left[ {a \ne 0, \pm 1} \right]\\
 \Rightarrow m - n = 0\\
 \Rightarrow m = n
\end{array}[/tex]

2) a, b, m বাস্তব সংখ্যা এবং [tex]{a^m} = {b^m}[/tex] হলে a = b যখন [tex]m \ne 0[/tex]

[tex]{a^m} = {b^m}[/tex] এর উভয়দিকে [tex]{b^m}[/tex] দিয়ে ভাগ করে পাই ।

[tex]\begin{array}{l}
{a^m} = {b^m}\\
 \Rightarrow \frac{{{a^m}}}{{{b^m}}} = 1\\
 \Rightarrow {\left( {\frac{a}{b}} \right)^m} = 1\\
 \Rightarrow \frac{a}{b} = 1\left[ {m \ne 0} \right]\\
 \Rightarrow a = b
\end{array}[/tex]

Comments

Related Items

করণীর কার্যপ্রণালী (Operations with Surds)

করণীর যোগফল ও বিয়োগফল(Addition and subtraction of Surds): করণীর যোগফল বা বিয়োগফল নির্ণয় করতে হলে নিম্নলিখিত পদ্ধতি অবলম্বন করতে হবে ।

বিভিন্ন প্রকার করণী (Different types of Surds)

সমমূলীয় ও অসমমূলীয় করণী (Equiradical and unequiradical surds): একাধিক করণী ক্রম সমান হলে তাদের সমমূলীয় করণী বলে ।

দ্বিঘাত করণীর কয়েকটি ধর্ম (Properties of Quadratic Surds)

1. দুটি অসদৃশ দ্বিঘাত করণীর গুণফল মূলদ রাশি হতে পারে না, 2. একটি সরল দ্বিঘাত করণী কখনও একটি মূলদ রাশি ও একটি দ্বিঘাত করণীর যোগফল বা অন্তরফল সমান হতে পারে না ।, 3. একটি সরল দ্বিঘাত করণী কখনও দুটি অসদৃশ সরল দ্বিঘাত করণীর যোগফল বা অন্তরফলের সমান হতে পারে না ।

করণীর সংক্ষিপ্তকরণ (Summary of Surds)

করণীর সংক্ষিপ্তকরণ (Summary of Surds) 1. একটি ধনাত্মক রাশি কোনো মূল সঠিকভাবে নির্ণয় করা সম্ভব না হলে সেই মূলকে করণী বলে । 2. কোনো করণীর মূল সূচক সংখ্যা n হলে তাকে nতম ক্রমের করণী বলে ।

সূচকের নিয়মাবলির প্রমাণ (Proof of Different laws of Indices)

সূচকের বিভিন্ন নিয়মাবলির প্রমাণ আলোচনা করা হলো