WBJEE - 2011 - Mathematics
1. The eccentricity of the hyperbola [tex]4{x^2} - 9{y^2} = 36[/tex] is
(A) [tex]{{\sqrt {11} } \over 3}[/tex] (B) [tex]{{\sqrt {15} } \over 3}[/tex] (C) [tex]{{\sqrt {13} } \over 3}[/tex] (D) [tex]{{\sqrt {14} } \over 3}[/tex]
Ans : (C)
2. The length of the latus rectum of the ellipse [tex]16{x^2} + 25{y^2} = 400[/tex] is
(A) 5/16 unit (B) 32/5 unit (C) 16/5 unit (D) 5/32 unit
Ans : (B)
3. The vertex of the parabola y<sup>2</sup> + 6x - 2y + 13 = 0 is
(A) (1, - 1) (B) (-2, 1) (C) [tex]\left( {{3 \over 2},1} \right)[/tex] (D) [tex]\left( { - {7 \over 2},1} \right)[/tex]
Ans : (B)
4. The coordinates of a moving point p are [tex](2{t^2} + 4,4t + 6)[/tex]. Then its locus will be a
(A) circle (B) straight line (C) parabola (D) ellipse
Ans : (C)
5. The equation 8x<sup>2</sup> + 12y<sup>2</sup> - 4x + 4y - 1 = 0 represents
(A) an ellipse (B) a hyperbola (C) a parabola (D) a circle
Ans : (A)
6. If the straight line y = mx lies outside of the circle x<sup>2</sup> + y<sup>2</sup> - 20y + 90 = 0, then the value of m will satisfy
(A) m < 3 (B) |m| < 3 (C) m > 3 (D) |m| > 3
Ans : (B)
7. The locus of the centre of a circle which passes through two variable points (a, 0), (–a, 0) is
(A) x = 1 (B) x + y = a (C) x + y = 2a (D) x = 0
Ans : (D)
8. The coordinates of the two points lying on x + y = 4 and at a unit distance from the straight line 4x + 3y = 10 are
(A) (–3, 1), (7, 11) (B) (3, 1), (–7, 11) (C) (3, 1), (7, 11) (D) (5, 3), (–1, 2)
Ans : (B)
9. The intercept on the line y = x by the circle [tex]{x^2} + {y^2} - 2x = 0[/tex] is AB. Equation of the circle with AB as diameter is
(A) [tex]{x^2} + {y^2} = 1[/tex] (B) [tex]x(x - 1) + y(y - 1) = 0[/tex]
(C) [tex]{x^2} + {y^2} = 2[/tex] (D) [tex](x - 1)(x - 2) + (y - 1) + (y - 2) = 0[/tex]
Ans : (B)
10. If the coordinates of one end of a diameter of the circle x<sup>2</sup> + y<sup>2</sup> + 4x - 8y + 5 = 0, is (2,1), the coordinates of the other end is
(A) (–6, –7) (B) (6, 7) (C) (–6, 7) (D) (7, –6)
Ans : (C)
11. If the three points A(1,6), B(3, –4) and C(x, y) are collinear then the equation satisfying by x and y is
(A) [tex]5x + y - 11 = 0[/tex] (B) [tex]5x + 13y + 5 = 0[/tex] (C) [tex]5x - 13y + 5 = 0[/tex] (D) [tex]13x - 5y + 5 = 0[/tex]
Ans : (A)
12. If [tex]\sin \theta = {{2t} \over {1 + {t^2}}}[/tex] and [tex]\theta [/tex] lies in the second quadrant, then [tex]\cos \theta [/tex] is equal to
(A) [tex]{{1 - {t^2}} \over {1 + {t^2}}}[/tex] (B) [tex]{{{t^2} - 1} \over {1 + {t^2}}}[/tex] (C) [tex]{{ - \left| {1 - {t^2}} \right|} \over {1 + {t^2}}}[/tex] (D) [tex]{{1 + {t^2}} \over {\left| {1 - {t^2}} \right|}}[/tex]
Ans : (C)
13. The solutions set of inequation cos<sup>–1</sup>x < sin<sup>–1</sup>x is
(A) [tex]\left[ { - 1,1} \right][/tex] (B) [tex]\left[ {{1 \over {\sqrt 2 }},1} \right][/tex] (C) [tex]\left[ {0,1} \right][/tex] (D) [tex]\left( {{1 \over {\sqrt 2 }},1} \right][/tex]
Ans : (D)
14. The number of solutions of 2sin x + cos x = 3 is
(A) 1 (B) 2 (C) infinite (D) No solution
Ans : (D)
15. Let [tex]\tan \alpha = {a \over {a + 1}}[/tex] and [tex]\tan \beta = {1 \over {2a + 1}}[/tex] then [tex]\alpha + \beta [/tex] is
(A) [tex]{\pi \over 4}[/tex] (B) [tex]{\pi \over 3}[/tex] (C) [tex]{\pi \over 2}[/tex] (D) [tex]\pi [/tex]
Ans : (A)
16. If [tex]\theta + \phi = {\pi \over 4}[/tex], then [tex](1 + \tan \theta )(1 + \tan \phi )[/tex] is equal to
(A) 1 (B) 2 (C) 5/2 (D) 1/3
Ans : (B)
17. If [tex]\sin \theta [/tex] and [tex]\cos \theta [/tex] are the roots of the equation [tex]a{x^2} - bx + c = 0[/tex], then a, b and c satisfy the relation
(A) [tex]{a^2} + {b^2} + 2ac = 0[/tex] (B) [tex]{a^2} - {b^2} + 2ac = 0[/tex]
(C) [tex]{a^2} + {c^2} + 2ab = 0[/tex] (D) [tex]{a^2} - {b^2} - 2ac = 0[/tex]
Ans : (B)
18. If A and B are two matrices such that A + B and AB are both defined, then
(A) A and B can be any matrices (B) A, B are square matrices not necessarily of the same order
(C) A, B are square matrices of the same order (D) Number of columns of A = number of rows of B
Ans : (C)
19. If [tex]A = \left( {\matrix{ 3 & {x - 1} \cr {2x + 3} & {x + 2} \cr } } \right)[/tex] is a symmetric matrix, then the value of x is
(A) 4 (B) 3 (C) –4 (D) –3
Ans : (C)
20. If [tex]Z = \left( {\matrix{1 & {1 + 2i} & { - 5i}\cr {1 - 2i} & { - 3} & {5 + 3i}\cr {5i} & {5 - 3i} & 7 \cr } } \right)[/tex] then [tex]\left( {i = \sqrt { - 1} } \right)[/tex]
(A) z is purely real (B) z is purely imaginary (C) [tex]z + \bar z = 0[/tex] (D) [tex](z - \bar z)i[/tex] is purely imaginary
Ans : (A)
21. The equation of the locus of the point of intersection of the straight lines [tex]x\sin \theta + (1 - \cos \theta )y = a\sin \theta [/tex] and [tex]x\sin \theta - (1 + \cos \theta)y + a\sin \theta = 0[/tex] is
(A) [tex]y = \pm ax[/tex] (B) [tex]x = \pm ay[/tex] (C) [tex]{y^2} = 4x[/tex] (D) [tex]{x^2} + {y^2} = {a^2}[/tex]
Ans : (D)
22. If [tex]\sin \theta + \cos \theta = 0[/tex] and [tex]0 < \theta < \pi[/tex], then [tex]\theta [/tex]
(A) 0 (B) [tex]{\pi \over 4}[/tex] (C) [tex]{\pi \over 2}[/tex] (D) [tex]{{3\pi} \over 4}[/tex]
Ans : (D)
23. The value of cos 15° – sin 15° is
(A) 0 (B) [tex]{1 \over {\sqrt 2 }}[/tex] (C) [tex] - {1 \over {\sqrt 2 }}[/tex] (D) [tex]{1 \over {2\sqrt 2 }}[/tex]
Ans : (B)
24. The period of the function ƒ(x)= cos 4x + tan 3x is
(A)[tex]\pi [/tex] (B)[tex]{\pi \over 2}[/tex] (C) [tex]{\pi \over 3}[/tex] (D) [tex]{\pi \over 4}[/tex]
Ans : (A)
25. If [tex]y = 2{x^3} - 2{x^2} + 3x - 5[/tex], then for x = 2 and [tex]\triangle x = 0.1[/tex] value of is [tex]\triangle y[/tex] is
(A) 2.002 (B) 1.9 (C) 0 (D) 0.9
Ans : (B)
26. The approximate value of [tex]\sqrt[5] {33} [/tex] correct to 4 decimal places is
(A) 2.0000 (B) 2.1001 (C) 2.0125 (D) 2.0500
Ans : (C)
27. The value of [tex]\int\limits_{ - 2}^2 {(x\cos x + \sin x + 1)dx} [/tex] is
(A) 2 (B) 0 (C) – 2 (D) 4
Ans : (D)
28. For the function [tex]f(x) = {e^{\cos x}}[/tex], Rolle’s theorem is
(A) applicable when [tex]{\pi \over 2} \le x \le {{3\pi } \over 2}[/tex] (B) applicable when [tex]0 \le x \le {\pi \over 2}[/tex]
(C) applicable when [tex]0 \le x \le \pi [/tex] (D) applicable when [tex]{\pi \over 4} \le x \le {\pi \over 2}[/tex]
Ans : (A)
29. The general solution of the differential equation [tex]{{{d^2}y} \over {d{x^2}}} + 8{{dy} \over {dx}} + 16y = 0[/tex] is
(A) [tex](A + Bx){e^{5x}}[/tex] (B) [tex](A + Bx){e^{4x}}[/tex] (C) [tex](A + B{x^2}){e^{4x}}[/tex] (D) [tex](A + B{x^4}){e^{4x}}[/tex]
Ans : (B)
30. If [tex]{x^2} + {y^2} = 4[/tex], then [tex]y{{dy} \over {dx}} + x = [/tex]
(A) 4 (B) 0 (C) 1 (D) -1
Ans : (B)
31. [tex]\int {{{{x^3}dy} \over {1 + {x^8}}} = } [/tex]
(A) [tex]4{\tan ^{ - 1}}{x^3} + c[/tex] (B) [tex]{1 \over 2}{\tan ^{ - 1}}{x^4} + c[/tex]
(C) [tex]x + 4{\tan ^{ - 1}}{x^4} + c[/tex] (D) [tex]{x^2} + {1 \over 4}{\tan ^{ - 1}}{x^4} + c[/tex]
Ans : (B)
32. [tex]\int\limits_\pi ^{16\pi } {\left| {\sin x} \right|dx} = [/tex]
(A) 0 (B) 32 (C) 30 (D) 28
Ans : (C)
33. The degree and order of the differential equation [tex]y = x{\left( {{{dy} \over {dx}}} \right)^2} + {\left( {{{dx} \over {dy}}} \right)^2}[/tex] are respectively
(A) 1, 1 (B) 2, 1 (C) 4, 1 (D) 1, 4
Ans: (C)
34. [tex]f(x) = \left\{ {\matrix{0 \cr {x - 3} \cr } } \right.\matrix{, \cr, \cr } \matrix{{x = 0} \cr {x > 0} \cr} [/tex] The function ƒ(x) is
(A) increasing when x ≥ 0 (B) strictly increasing when x > 0
(C) Strictly increasing at x = 0 (D) not continuous at x = 0 and so it is not increasing when x > 0
Ans :(B)
35. The function ƒ(x) = ax + b is strictly increasing for all real x if
(A) a > 0 (B) a < 0 (C) a = 0 (D) a ≤ 0
Ans : (A)
36. [tex]\int {{{\cos 2x} \over {\cos x}}dx} = [/tex]
(A) 2 sin x + log | sec x + tan x | + C (B) 2 sin x – log |sec x – tan x| + c
(C) 2 sin x – log |sec x + tan x| + C (D) 2 sin x + log |sec x – tan x| + C
Ans: (C)
37. [tex]\int {{{{{\sin }^8}x - {{\cos }^8}x} \over {1 - 2{{\sin }^2}x{{\cos }^2}x}}dx} [/tex]
(A) [tex] - {1 \over 2}\sin 2x + C[/tex] (B) [tex]{1 \over 2}\sin 2x + C[/tex] (C) [tex]{1 \over 2}\sin x + C[/tex] (D) [tex] - {1 \over 2}\sin x + C[/tex]
Ans : (A)
38. The general solution of the differential equation [tex]{\log _e}\left( {{{dy} \over {dx}}} \right) = x + y[/tex] is
(A) e<sup>x</sup> + e<sup>–y</sup> = C (B) e<sup>x</sup> + e<sup>y</sup> = C (C) e<sup>y</sup> + e<sup>-x</sup> = C (D) e<sup>-x</sup> + e<sup>-y</sup> = C
Ans : (A)
39. If [tex]y = {A \over x} + B{x^2}[/tex], then [tex]{x^2}{{{d^2}y} \over {d{x^2}}} = [/tex]
(A) 2y (B) y<sup>2</sup> (C) y<sup>3</sup> (D) y<sup>4</sup>
Ans: (A)
40. If one of the cube roots of 1 be [tex]\omega [/tex], then [tex]\left| {\matrix{1 & {1 + {\omega ^2}} & {{\omega ^2}} \cr {1 - i} & { - 1} & {{\omega ^2} - 1} \cr
{ - i} & { - 1 + \omega } & { - 1} \cr } } \right|[/tex] =
(A) [tex]\omega [/tex] (B) i (C) 1 (D) 0
Ans: (D)
41. 4 boys and 2 girls occupy seats in a row at random. Then the probability that the two girls occupy seats side by side is
(A) [tex]{1 \over 2}[/tex] (B) [tex]{1 \over 4}[/tex] (C) [tex]{1 \over 3}[/tex] (D) [tex]{1 \over 6}[/tex]
Ans : (C)
42. A coin is tossed again and again. If tail appears on first three tosses, then the chance that head appears on fourth toss is
(A) [tex]{1 \over 16}[/tex] (B) [tex]{1 \over 2}[/tex] (C) [tex]{1 \over 8}[/tex] (D) [tex]{1 \over 4}[/tex]
Ans : (B)
43. The coefficient of X<sup>n</sup> in the expansion of [tex]{e^{7x} + {e^x}} \over {e^{3x}}[/tex] is
(A) [tex]{{{4^{n - 1}} - {{( - 2)}^{n - 1}}} \over {\left| {n\limits_ - }}[/tex] (B) [tex]{{{4^{n - 1}} - {2^{n - 1}}} \over {\left|{n\limits_-}}[/tex] (C) [tex]{{{4^n} - {2^n}}\over {\left|{ n\limits_ - }}[/tex] (D)[tex]{{{4^n}+{{(-2)}^n}}\over {\left| {n\limits_ - }}[/tex]
Ans :(D)
44. The sum of the series [tex]{1 \over {1.2}} - {1 \over {2.3}} + {1 \over {3.4}} - \cdots\cdots \infty [/tex] is
(A) [tex]2{\log _e}2 + 1[/tex] (B) [tex]2{\log _e}2[/tex] (C) [tex]2{\log _e}2 - 1[/tex] (D) [tex]{\log _e}2 - 1[/tex]
Ans : (C)
45. The number (101)100 – 1 is divisible by
(A) 104 (B) 106 (C) 108 (D) 1012
Ans : (A)
46. If A and B are coefficients of x<sup>n</sup> in the expansions of (1+ x)<sup>2n</sup> and (1+x)<sup>2n – 1</sup> respectively, then A/B is equal to
(A) 4 (B) 2 (C) 9 (D) 6
Ans : (B)
47. If n > 1 is an integer and [tex]x \ne 0[/tex], then (1 + x)<sup>n</sup> – nx – 1 is divisible by
(A) nx<sup>3</sup> (B) n<sup>3</sup>x (C) x (D) nx
Ans : (C)
48. If <sup>n</sup>C<sub>4</sub>, <sup>n</sup>C<sub>5</sub> and <sup>n</sup>C<sub>6</sub> are in A.P., then n is
(A) 7 or 14 (B) 7 (C) 14 (D) 14 or 21
Ans : (A)
49. The number of diagonals in a polygon is 20. The number of sides of the polygon is
(A) 5 (B) 6 (C) 8 (D) 10
Ans : (C)
50. <sup>15</sup>C<sub>3</sub> + <sup>15</sup>C<sub>5</sub> + ......... + <sup>15</sup>C<sub>15</sub> =
(A) 2<sup>14</sup> (B) 2<sup>14</sup> – 15 (C) 2<sup>14</sup> + 15 (D) 2<sup>14</sup> – 1
Ans : (B)
51. Let a, b, c be three real numbers such that a + 2b + 4c = 0. Then the equation ax<sup>2</sup> + bx + c = 0
(A) has both the roots complex (B) has its roots lying within – 1 < x < 0
(C) has one of roots equal to ½ (D) has its roots lying within 2 < x < 6
Ans : (C)
52. If the ratio of the roots of the equation px<sup>2</sup> + qx + r = 0 is a : b, then [tex]{{ab} \over {{{(a + b)}^2}}} = [/tex]
(A) [tex]{{{p^2}} \over {qr}}[/tex] (B) [tex]{{pr} \over {{q^2}}}[/tex] (C) [tex]{{{p^2}} \over {pr}}[/tex] (D) [tex]{{pq} \over {{r^2}}}[/tex]
Ans : (B)
53. If α and ß are the roots of the equation x<sup>2</sup> + x + 1 = 0, then the equation whose roots are α<sup>19</sup> and ß<sup>7</sup> is
(A) x<sup>2</sup> – x – 1 = 0 (B) x<sup>2</sup> – x + 1 = 0 (C) x<sup>2</sup> + x – 1= 0 (D) x<sup>2</sup> + x + 1 = 0
Ans : (D)
54. For the real parameter t, the locus of the complex number [tex]z = (1 + {t^2}) + i\sqrt {1 + {t^2}} [/tex] in the complex plane is
(A) an ellipse (B) a parabola (C) a circle (D) a hyperbola
Ans : (B)
55. If [tex]x + {1 \over x} = 2\cos \theta [/tex], then for any integer n, [tex]{x^n} + {1 \over {{x^n}}} = [/tex]
(A) [tex]2\cos n\theta [/tex] (B) [tex]2\sin n\theta [/tex] (C) [tex]2i \cos n\theta [/tex] (D) [tex]2i \sin n\theta [/tex]
Ans : (A)
56. If [tex]\omega \ne 1[/tex] is a cube root of unity, then the sum of the series [tex]S = 1 + 2\omega + 3{\omega^2} + \cdots \cdots + 3n{\omega^{3n - 1}}[/tex] is
(A) [tex]{{3n} \over {\omega - 1}}[/tex] (B) [tex]3n(\omega - 1)[/tex] (C) [tex]{{\omega - 1} \over {3n}}[/tex] (D) 0
Ans : (A)
57. If [tex]{\log _3}x + {\log _3}y = 2 + {\log _3}2[/tex] and [tex]{\log _3}(x + y) = 2[/tex], then
(A) x = 1, y = 8 (B) x = 8, y = 1 (C) x = 3, y = 6 (D) x = 9, y = 3
Ans : (C)
58. If [tex]{\log _7}2 = \lambda [/tex] then value of [tex]{\log _{49}}(28)[/tex] is
(A) [tex](2\lambda +1)[/tex] (B) [tex](2\lambda + 3)[/tex] (C) [tex]{1 \over 2}(2\lambda + 1)[/tex] (D) [tex]2(2\lambda + 1)[/tex]
Ans : (C)
59. The sequence [tex]\log a,\log {{{a^2}} \over b},\log {{{a^3}} \over {{b^2}}}, \cdots \cdots [/tex] is
(A) a G.P. (B) an A.P. (C) a H.P. (D) both a G.P. and a H.P
Ans : (B)
60. If in a triangle ABC, sin A, sin B, sin C are in A.P., then
(A) the altitudes are in A.P. (B) the altitudes are in H.P.
(C) the angles are in A.P. (D) the angles are in H.P.
Ans : (B)
61. [tex]\left| {\matrix{{a - b} & {b - c} & {c - a} \cr {b - c} & {c - a} & {a - b} \cr {c - a} & {a - b} & {b - c} \cr }} \right| = [/tex]
(A) 0 (B) – 1 (C) 1 (D) 2
Ans : (A)
62. The area enclosed between y<sup>2</sup> = x and y = x is
(A) [tex]{2 \over 3}[/tex] sq. units (B) [tex]{1 \over 2}[/tex] units (C) [tex]{1 \over 3}[/tex] units (D) [tex]{1 \over 6}[/tex] units
Ans: (D)
63. Let [tex]f(x) = {x^3}{e^{ - 3x}},x > 0[/tex]. Then the maximum value of ƒ(x) is
(A) e<sup>-3</sup> (B) 3e<sup>-3</sup> (C) 27e<sup>-9</sup> (D) ∞
Ans : (A)
64. The area bounded by y<sup>2</sup> = 4x and x<sup>2</sup> = 4y is
(A) [tex] {{20} \over 3}[/tex] sq. unit (B) [tex] {{16} \over 3}[/tex] sq. unit (C) [tex] {{14} \over 3}[/tex] sq. unit (D)[tex] {{10} \over 3}[/tex] sq. unit
Ans: (B)
65. The acceleration of a particle starting from rest moving in a straight line with uniform acceleration is 8m/sec2. The time taken by the particle to move the second metre is
(A) [tex]{{\sqrt 2 - 1} \over 2}[/tex] sec (B) [tex]{{\sqrt 2 + 1} \over 2}[/tex] sec (C) [tex](1 + \sqrt 2 )[/tex] sec (D) [tex](\sqrt 2 - 1)[/tex] sec
Ans : (A)
66. The solution of [tex]{{dy} \over {dx}} = {y \over x} + \tan {y \over x}[/tex] is
(A) x = c sin(y/x) (B) x = c sin(xy) (C) y = c sin(y/x) (D) xy = c sin (x/y)
Ans : (A)
67. Integrating Factor (I.F.) of the defferential equation [tex]{{dy} \over {dx}} - {{3{x^2}y} \over {1 + {x^3}}} = {{{{\sin }^2}(x)} \over {1 + x}}[/tex] is
(A) [tex]{e^{1 + {x^3}}}[/tex] (B) [tex]\log (1 + {x^3})[/tex] (C) [tex]1 + {x^3}[/tex] (D) [tex]{1 \over {1 + {x^3}}}[/tex]
Ans : (D)
68. The differential equation of y = ae<sup>bx</sup> (a & b are parameters) is
(A) [tex]y{y_1} = y_2^2[/tex] (B) [tex]y{y_2} = y_1^2[/tex] (C) [tex]yy_1^2 = {y_2}[/tex] (D) [tex]yy_2^2 = {y_1}[/tex]
Ans : (B)
69. The value of [tex]\lim\limits_{n \to \infty}\sum\limits_{r = 1}^n {{{{r^3}} \over {{r^4} + {n^4}}}}[/tex] is
(A) [tex]{1 \over 2}{\log _e}(1/2)[/tex] (B) [tex]{1 \over 4}{\log _e}(1/2)[/tex] (C)[tex]{1 \over 4}{\log _e}2[/tex] (D) [tex]{1 \over 2}{\log _e}2[/tex]
Ans: (C)
70. The value of [tex]\int\limits_0^\pi{{{\sin }^{50}}x} {\cos^{49}}xdx[/tex] is
(A) 0 (B) [tex]{\pi \over 4} [/tex] (C) [tex]{\pi \over 2} [/tex] (D) 1
Ans: (A)
71. [tex]\int {{2^x}(f'(x) + f(x)\log 2)dx} [/tex] is
(A) [tex]{2^x}f'(x) + C[/tex] (B) [tex]{2^x}f(x) + C[/tex] (C) [tex]{2^x}(\log 2)f(x) + C[/tex] (D) [tex](\log 2)f(x) + C[/tex]
Ans:(B)
72. Let [tex]f(x) = {\tan ^{ - 1}}x[/tex]. Then [tex]f'(x) + f''(x)[/tex] is =0, when x is equal to
(A) 0 (B) +1 (C) i (D) -i
Ans: (B)
73. If [tex]y={\tan^{- 1}}{{\sqrt {1+{x^2}}- 1}\over x}[/tex], then y'(1)=
(A) 1/4 (B) 1/2 (C) -1/4 (D) -1/2
Ans : (A)
74. The value of [tex]\lim\limits_{x \to 1}{{x+{x^2}+ \cdots + {x^n}- n} \over {x-1}}[/tex] is
(A) n (B) [tex]{{n+1} \over 2} [/tex] (C)[tex]{{n(n+1)} \over 2} [/tex] (D)[tex]{{n(n-1)} \over 2} [/tex]
Ans: (C)
75. [tex]\lim \limits_{x \to 0} {{\sin (\pi {{\sin }^2}x)} \over {{x^2}}}[/tex] =
(A) [tex]{\pi ^2}[/tex] (B) [tex]3\pi [/tex] (C) [tex]2\pi [/tex] (D) [tex]\pi [/tex]
Ans: (D)
76. If the function [tex]f(x) = \left\{ {\matrix{ {{{{x^2} - (A + 2)x + A} \over {x - 2}}} \cr 2 \cr }} \right.\matrix{ {for} & {x \ne 2} \cr {for} & {x = 2} \cr } [/tex] is continuous at x = 2, then
(A) A = 0 (B) A = 1 (C) A = – 1 (D) A = 2
Ans : (A)
77. [tex]f(x)= \left\{{\matrix{{\left[x \right] + \left[{-x} \right],}\cr \lambda \cr}}\right.\matrix{{when} &{x \ne 2} \cr {when} &{x = 2} \cr}[/tex]
If ƒ(x) is continuous at x = 2, the value of [tex]\lambda [/tex] will be
(A) – 1 (B) 1 (C) 0 (D) 2
Ans : (A)
78. The even function of the following is
(A) [tex]f(x) = {{{a^x} + {a^{- x}}} \over {{a^x} - {a^{- x}}}}[/tex] (B) [tex]f(x) = {{{a^x} + 1} \over {{a^x} - 1}}[/tex]
(C) [tex]f(x) = x.{{{a^x} - 1} \over {{a^x} + 1}}[/tex] (D) [tex]f(x) = {\log _2}\left( {x + \sqrt {{x^2} + 1} } \right)[/tex]
Ans : (C)
79. If ƒ(x + 2y, x – 2y) = xy, then ƒ(x, y) is equal to
(A) [tex]{1\over 4}xy[/tex] (B) [tex]{1 \over 4}({x^2} - {y^2})[/tex] (C) [tex]{1 \over 8}({x^2} - {y^2})[/tex] (D) [tex]{1 \over 2}({x^2} + {y^2})[/tex]
Ans: (C)
80. The locus of the middle points of all chords of the parabola y<sup>2</sup> = 4ax passing through the vertex is
(A) a straight line (B) an ellipse (C) a parabola (D) a circle
Ans : (C)
***