WB-JEE - 2009-Mathematics
1. If C is the reflecton of A (2, 4) in x-axis and B is the reflection of C in y-axis, then |AB| is
(A) 20 (B) 2√5 (C) 4√5 (D) 4
Ans : (C)
2. The value of cos15∘cos71∘2sin71∘2 is
(A) 12 (B) 18 (C) 14 (D) 116
Ans : (B)
3. The value of integral 1∫−1|x+2|x+2dx is
(A) 1 (B) 2 (C) 0 (D) –1
Ans : (B)
4. The line y=2t2 intersects the ellipse x29+y24=1 in real points if
(A) | t | ≤ 1 (B) | t | < 1 (C) | t | > 1 (D) | t | ≥ 1
Ans : (A)
5. General solution of \sin x + \cos x = {\min }\limits_{a \in IR} \left\{ {1,{a^2} - 4a + 6} \right\} is
(A) nπ2+(−1)nπ4 (B) 2nπ+(−1)nπ4 (C) nπ+(−1)n+1π4 (D) nπ+(−1)nπ4−π4
Ans : (D)
6. If A and B square matrices of the same order and AB = 3I, then A–1 is equal to
(A) 3B (B) 13B (C) 3B−1 (D) 13B−1
Ans : (B)
7. The co-ordinates of the focus of the parabola described parametrically by x=5t2+2 , y=10t+4 are
(A) (7, 4) (B) (3, 4) (C) (3, –4) (D) (–7, 4)
Ans : (A)
8. For any two sets A and B, A – (A – B) equals
(A) B (B) A – B (C) A ∩ B (D) Ac ∩ Bc
Ans : (C)
9. If a = 2√2 , b = 6 , A = 45°, then
(A) no triangle is possible (B) one triangle is possible
(C) two triangle are possible (D) either no triangle or two triangles are possible
Ans : (A)
10. A Mapping from IN to IN is defined as follows :f : IN → INf(n) = (n + 5)2 , n ∈ IN(IN is the set of natural numbers). Then
(A) f is not one-to-one (B) f is onto (C) f is both one-to-one and onto (D) f is one-to-one but not onto
Ans : (D)
11. In a triangle ABC if sinAsinB=abc2 then the triangle is
(A) equilateral (B) isosceles (C) right angled (D) obtuse angled
Ans : (C)
12. ∫dxsinx+√3cosx equals
(A) 121n|tan(x2−π6)|+c (B) 121n|tan(x4−π6)|+c
(C) 121n|tan(x2+π6)|+c (D) 121n|tan(x4+π3)|+c
where c is an arbitrary constant
Ans : (C)
13. The value of (1+cosπ6)(1+cosπ3)(1+cos2π3)(1+cos7π6) is
(A) 316 (B) 38 (C) 34 (D) 12
Ans : (A)
14. If P=12sin2θ+13cos2θ then
(A) 13≤P≤12 (B) P≥12 (C) 2≤P≤3 (D) −√136≤P≤√136
Ans : (A)
15. A positive acute angle is divided into two parts whose tangents are 12 and 13. Then the angle is
(A) π4 (B) π5 (C) π3 (D) π6
Ans : (A)
16. If f(x)=f(a−x) then a∫0xf(x)dx is equal to
(A) a∫0f(x)dx (B) a22a∫0f(x)dx (C) a2a∫0f(x)dx (D) −a2a∫0f(x)dx
Ans : (C)
17. The value of ∞∫0dx(x2+4)(x2+9) is
(A) π60 (B) π20 (C) π40 (D) π80
Ans : (A)
18. If I1=π/4∫0sin2xdx and I1=π/4∫0cos2xdx , then,
(A) I1=I2 (B) I1<I2 (C) I1>I2 (D) I2=I1+π/4
Ans : (B)
19. The second order derivative of a sin3t with respect to a cos3t at t=π4 is
(A) 2 (B) 112a (C) 4√23a (D) 3a4√2
Ans : (C)
20. The smallest value of 5 cos θ + 12 is
(A) 5 (B) 12 (C) 7 (D) 17
Ans : (C)
21. The general solution of the differential equation dydx=ey+x+ey−x is
(A) e–y = ex – e–x + c (B) e–y = e-x – ex + c (C) e–y = ex + e–x + c (D) ey = ex + e–x + c
where c is an arbitrary constant
Ans : (B)
22. Product of any r consecutive natural numbers is always divisible by
(A) r ! (B) (r + 4) ! (C) (r + 1) ! (D) (r + 2) !
Ans : (A)
23. The integrating factor of the differential equation xlogxdydx+y=2logx is given by
(A) ex (B) log x (C) log (log x) (D) x
Ans : (B)
24. If x² + y² = 1 then
(A) yy′′ − (2y′)² + 1 = 0 (B) yy′′ + ( y′)² +1 = 0 (C) yy′′ − (y′)² −1 = 0 (D) yy′′ + (2y′)² + 1 = 0
Ans : (B)
25. If c0, c1, c2, ..................., cn denote the co-efficients in the expansion of (1 + x)ⁿ
then the value of c1 + 2c2 + 3c3 + ..... + ncn is
(A) n.2n-1 (B) (n + 1)n-1 (C) (n + 1)2n (D) (n + 2) 2n-1
Ans. (A)
26. A polygon has 44 diagonals. The number of its sides is
(A) 10 (B) 11 (C) 12 (D) 13
Ans : (B)
27. If α, β be the roots of x² – a(x – 1) + b = 0, then the value of 1α2−aα+1β2−aβ+2a+b
(A) 4a+b (B) 1a+b (C) 0 (D) –1
Ans : (C)
28. The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is 90° . The eccentricity of the ellipse is
(A) 18 (B) 1√3 (C) √23 (D) √12
Ans : (D)
29. The order of the differential equation d2ydx2=√1−(dydx)2 is
(A) 3 (B) 2 (C) 1 (D) 4
Ans : (B)
30. The sum of all real roots of the equation |x – 2|² + |x – 2| – 2 = 0
(A) 7 (B) 4 (C) 1 (D) 5
Ans : (B)
31. If 4∫−1f(x)dx=4 and 4∫2{3−f(x)}dx=7 then the value of 2∫−1f(x)dx
(A) –2 (B) 3 (C) 4 (D) 5
Ans : (D)
32. For each n∈ N, 23n – 1 is divisible by
(A) 7 (B) 8 (C) 6 (D) 16
where N is a set of natural numbers
Ans : (A)
33. The Rolle’s theorem is applicable in the interval – 1 ≤ x ≤ 1 for the function
(A) ƒ(x) = x (B) ƒ(x) = x² (C) ƒ(x) = 2x3 + 3 (D) ƒ(x) = |x|
Ans : (B)
34. The distance covered by a particle in t seconds is given by x = 3 + 8t – 4t² . After 1 second velocity will be
(A) 0 unit/second (B) 3 units/second (C) 4 units/second (D) 7 units/second
Ans : (A)
35. If the co-efficients of x² and x³ in the expansion of (3 + ax)9 be same, then the value of ‘a’ is
(A) 37 (B) 73 (C) 79 (D) 97
Ans : (D)
36. The value of (1log312+1log412) is
(A) 0 (B) 12 (C) 1 (D) 2
Ans : (C)
37. If x = loga bc, y = logb ca, z = log<sub>c</sub> ab, then the value of 11+x+11+y+11+z will be
(A) x + y + z (B) 1 (C) ab + bc + ca (D) abc
Ans : (B)
38. Using binomial theorem, the value of (0.999)³ correct to 3 decimal places is
(A) 0.999 (B) 0.998 (C) 0.997 (D) 0.995
Ans : (C)
39. If the rate of increase of the radius of a circle is 5 cm/.sec., then the rate of increase of its area, when the radius is 20 cm, will be
(A) 10π (B) 20π (C) 200π (D) 400π
Ans : (C)
40. The quadratic equation whose roots are three times the roots of 3ax² + 3bx + c = 0 is
(A) ax² + 3bx + 3c = 0 (B) ax² + 3bx + c = 0 (C) 9ax² + 9bx + c = 0 (D) ax² + bx + 3c = 0
Ans : (A)
41. Angle between y² = x and x² = y at the origin is
(A) 2tan−1(34) (B) tan−1(43) (C)π2 (D) π4
Ans : (C)
42. In triangle ABC, a = 2, b = 3 and sinA=23 , then B is equal to
(A) 30° (B) 60° (C) 90° (D) 120°
Ans : (C)
43. 1000∫0ex−[x] is equal to
(A) e1000−1e−1 (B) e1000−11000 (C) e−11000 (D) 1000 (e – 1)
Ans : (D)
44. The coefficient of xⁿ, where n is any positive integer, in the expansion of (1 + 2x + 3x² + ......... ∞)½ is
(A) 1 (B) n+12 (C) 2n + 1 (D) n + 1
Ans : (A)
45. The circles x² + y² – 10x + 16 = 0 and x² + y² = a² intersect at two distinct points if
(A) a < 2 (B) 2 < a < 8 (C) a > 8 (D) a = 2
Ans. (B)
46. ∫sin−1x√1−x2dx is equal to
(A) log(sin−1x)+c (B) 12(sin−1x)2+c (C) log(√1−x2)+c (D) sin(cos−1x)+c
where c is an arbitrary constant
Ans : (B)
47. The number of points on the line x + y = 4 which are unit distance apart from the line 2x + 2y = 5 is
(A) 0 (B) 1 (C) 2 (D) Infinity
Ans : (A)
48. Simplest form of 2√2+√2+√2+2cos4x is
(A) secx2 (B) sec x (C) cosec x (D) 1
Ans : (A)
49. If y=tan−1√1−sinx1+sinx , then the value of dydx at x=π6
(A) −12 (B) 12 (C) 1 (D) –1
Ans : (A)
50. If three positive real numbers a , b , c are in A.P. and abc = 4 then minimum possible value of b is
(A) 23/2 (B) 22/3 (C) 21/3 (D) 25/2
Ans : (B)
51. If 5cos2θ+2cos2θ2+1=0 , when (0 < θ < π), then the values of θ are :
(A) π3±π (B) π3,cos−1(35) (C) cos−1(35)±π (D) π3,π−cos−1(35)
Ans : (D)
52. For any complex number z, the minimum value of |z| + |z – 1| is
(A) 0 (B) 1 (C) 2 (D) –1
Ans : (B)
53. For the two circles x² + y² = 16 and x² + y² – 2y = 0 there is / are
(A) one pair of common tangents (B) only one common tangent
(C) three common tangents (D) no common tangent
Ans : (D)
54. If C is a point on the line segment joining A (–3, 4) and B (2, 1) such that AC = 2BC , then the coordinateof C is
(A) (13,2) (B) (2,13) (C) (2, 7) (D) (7, 2)
Ans : (A)
55. If a , b , c are real, then both the roots of the equation (x – b) (x – c) + (x – c) (x – a) + (x – a) (x – b) = 0 are always
(A) positive (B) negative (C) real (D) imaginary
Ans : (C)
56. The sum of the infinite series 1+12!+1.34!+1.3.56!+⋯⋯
(A) e (B) e² (C) √e (D) 1e
Ans : (C)
57. The point (–4, 5) is the vertex of a square and one of its diagonals is 7x – y + 8 = 0. The equation of the other diagonal is
(A) 7x – y + 23 = 0 (B) 7y + x = 30 (C) 7y + x = 31 (D) x – 7y = 30
Ans : (C)
58. The domain of definition of the function f(x)=√1+loge(1−x) is
(A) −∞<x≤0 (B) −∞<x≤e−1e (C) −∞<x≤1 (D) x≥1−e
Ans : (B)
59. For what value of m, am+1+bm+1am+bm is the arithmetic meanof ‘a’ and ‘b’ ?
(A) 1 (B) 0 (C) 2 (D) None
Ans : (B)
60. The value of the limit {\lim }\limits_{x \to 1} {{\sin ({e^{x - 1}} - 1)} \over {\log x}} is
(A) 0 (B) e (C) 1e (D) 1
Ans : (D)
61. Let f(x)=√x+3x+1 then the value of {Lt}\limits_{x \to - 3 - 0} f(x) is
(A) 0 (B) does not exist (C) 12 (D) −12
Ans : (B)
62. ƒ(x) = x + | x | is continuous for
(A) x∈(−∞,∞) (B) x∈(−∞,∞) −{0} (C) only x > 0 (D) no value of x
Ans : (A)
63. tan[π4+12cos−1(ab)]+tan[π4−12cos−1(ab)] is equal to
(A) 2ab (B) 2ba (C) ab (D) ba
Ans : (B)
64. If i=√−1 and n is a positive integer, then in+in+1+in+2+in+3 is euqal to
(A) 1 (B) i (C) iⁿ (D) 0
Ans : (D)
65. ∫dxx(x+1) equals
(A) ln|x+1x|+c (B) ln|xx+1|+c (C)ln|x−1x|+c (D) ln|x−1x+1|+c
where c is an arbitrary constant.
Ans : (B)
66. If a, b, c are in G.P. (a > 1, b > 1, c > 1), then for any real number x (with x > 0, x ≠ 1), loga x , logb x, logc x are in
(A) G..P. (B) A.P. (C) H.P. (D) G..P. but not in H.P.
Ans : (C)
67. A line through the point A (2, 0) which makes an angle of 30° with the positive direction of x-axis is rotated about A in clockwise direction through an angle 15°. Then the equation of the straight line in the new position is
(A) (2 - √3)x + y - 4 + 2√3 = 0 (B) (2 - √3)x - y - 4 + 2√3 = 0
(C) (2 - √3)x - y + 4 + 2√3 = 0 (D) (2 - √3)x + y + 4 + 2√3 = 0
Ans : (B)
68. The equation √3sinx+cosx=4 has
(A) only one solution (B) two solutions (C) infinitely many solutions (D) no solution
Ans : (D)
69. The slope at any point of a curve y = ƒ(x) is given by dydx=3x2 and it passes through (–1 , 1). The equation of the curve is
(A) y = x³ + 2 (B) y = – x³ – 2 (C) y = 3x³ + 4 (D) y = – x³ + 2
Ans : (A)
70. The modulus of 1−i3+i+4i5 is
(A) √5 unit (B) √115 unit (C) √55 unit (D) √125 unit
Ans : (C)
71. The equation of the tangent to the conic x² – y² – 8x + 2y + 11 = 0 at (2, 1) is
(A) x + 2 = 0 (B) 2x + 1 = 0 (C) x + y + 1 = 0 (D) x – 2 = 0
Ans : (D)
72. A and B are two independent events such that P(A∪B') = 0.8 and P(A) = 0.3. The P(B) is
(A) 27 (B) 23 (C) 38 (D) 18
Ans : (A)
73. The total number of tangents through the point (3, 5) that can be drawn to the ellipses 3x² + 5y² = 32 and 25x² + 9y² = 450 is
(A) 0 (B) 2 (C) 3 (D) 4
Ans : (C)
74. The value of {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + \cdots \cdots {n \over {{n^2} + {n^2}}}} \right] is
(A) π4 (B) log 2 (C) zero (D)1
Ans : (A)
75. A particle is moving in a straight line. At time t, the distance between the particle from its starting pointis given by x = t – 6t² + t³. Its acceleration will be zero at
(A) t = 1 unit time (B) t = 2 unit time (C) t = 3 unit time (D) t = 4 unit time
Ans : (B)
76. Three numbers are chosen at random from 1 to 20. The probability that they are consecutive is
(A) 1190 (B) 1120 (C) 3190 (D) 5190
Ans : (C)
77. The co-ordinates of the foot of the perpendicular from (0, 0) upon the line x + y = 2 are
(A) (2, –1) (B) (–2, 1) (C) (1, 1) (D) (1, 2)
Ans : (C)
78. If A is a square matrix then,
(A) A + AT is symmetric (B) AAT is skew - symmetric (C) AT + A is skew-symmetric (D) ATA is skew symmetric
Ans : (A)
79. The equation of the chord of the circle x² + y² – 4x = 0 whose mid point is (1, 0) is
(A) y = 2 (B) y = 1 (C) x = 2 (D) x = 1
Ans : (D)
80. If A² – A + I = 0, then the inverse of the matrix A is
(A) A – I (B) I – A (C) A + I (D) A
Ans : (B)
***