লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান

Submitted by arpita pramanik on Mon, 08/31/2020 - 21:12

লেখচিত্রের সাহায্যে রৈখিক সহসমীকরণ সমাধান 

 

মনে করি 3x + 4y = 25 এবং 4x - 3y = 0 দুটি সমীকরণ এদেরকে আমাদের সমাধান করতে হবে । 

সমাধান : এখন 

[tex]\begin{array}{l}
3x + 4y = 25\\
 \Rightarrow 4y = 25 - 3x\\
 \Rightarrow y = \frac{{25 - 3x}}{4}.......(i)
\end{array}[/tex]

 

গড়া

(i) এর থেকে আমরা পাই 

x 3 -1 -5
[tex]y = \frac{{25 - 3x}}{4}[/tex] 4 7 10

3x + 4y = 25 সরলরেখা থেকে যে সমাধান বিন্দুগুলি পাই তাহল (3,4) , (-1,5) এবং (-5,10)

আবার 

[tex]\begin{array}{l}
4x - 3y = 0\\
 \Rightarrow 3y = 4x\\
 \Rightarrow y = \frac{{4x}}{3}.......(ii)
\end{array}[/tex]

(ii) এর থেকে আমরা পাই 

x 0 3 -3
[tex]y = \frac{{4x}}{3}[/tex] 0 4 -4

4x - 3y = 0 সরলরেখা থেকে যে সমাধান বিন্দুগুলি পাই তাহল (0,0) , (3,4) এবং (-3,-4)

দেখা যাচ্ছে দুটি সরলরেখার একটি সাধারণ বিন্দু হল (3,4) . অর্থাৎ দুটি সরলরেখা পরস্পরকে (3,4) বিন্দুতে ছেদ করেছে। অতএব সরলরেখা দুটি কে সমাধান করলে আমরা পাবো x = 3 , y = 4 .

এর থেকে আমরা বলতে পারি রৈখিক সহসমীকরণের সমাধান সম্ভব যদি তারা পরস্পরকে ছেদ করে নতুবা নয়। 

উপরের আলোচনা থেকে দেখা যাচ্ছে যে বিন্দুগুলির স্থানাঙ্ক জানা থাকলে সেগুলি যোগ করে বিভিন্ন সমতলিক জ্যামিতিক চিত্র পাওয়া যায় । আবার বিভিন্ন বীজগাণিতিক দুই চলবিশিষ্ট রৈখিক সহসমীকরণ জ্যামিতিক আকার সম্পর্কে ঠিক মতো ধারণা করা যায় । এইভাবে বীজগণিতের সাহায্যে বিভিন্ন জ্যামিতিক আকারের ধারণা গড়ে ওঠা কে স্থানাঙ্ক জ্যামিতি ( Co-ordinate Geometry ) বলা হয় । অর্থাৎ স্থানাঙ্ক জ্যামিতিতে বীজগণিতের সাহায্যে ধারণা করতে পারি। তাই স্থানাঙ্ক জ্যামিতি ব্যাপকতরভাবে বিজ্ঞানের বিভিন্ন শাখায় ব্যবহার করা হয় । 

*****

Comments

Related Items

সূচকের নিয়মাবলি (Laws of Index)

কোনো সংখ্যাকে সেই সংখ্যা দ্বারা একাধিকবার গুণ করার প্রক্রিয়াকে প্রকাশ করা হয় সংখ্যাটির মাথার ডানদিকে সংখ্যাটিকে যত সংখ্যক বার গুণ করা হয়েছে সেই সংখ্যাটি বসিয়ে। এই প্রক্রিয়াকে সূচকের নিয়ম বলে।

ব্যাপকতর ত্রৈরাশিক (Rules of Three)

ত্রৈরাশিক পদ্ধতির প্রতিষ্ঠিত সূত্রটিকে সম্প্রসারিত আকারে ব্যবহার করাকে ব্যাপকতর ত্রৈরাশিক বলে। প্রতিটি বিষয়ের মান দুটি দিয়ে ভগ্নাংশ তৈরির ক্ষেত্রে ভগ্নাংশটি প্রকৃত না অপ্রকৃত হবে তার সিদ্ধান্ত নেবার সময় ধরে নিতে হবে যে অপর বিষয়গুলির মান অপরিবর্তিত থাকছে ।

পাটিগনিত - পূর্বপাঠের পুনরালোচনা

পূর্বপাঠের পুনরালোচনা- গড় (Mean), সরল গড়, গড় মানের চেয়ে মোট কমের পরিমান = গড় মানের চেয়ে মোট বেশীর পরিমান, গড়মানকে তথ্যগুলির কেন্দ্রীয় মান বা প্রতিনিধিত্ব মূলক মান হিসাবে ধরা হয়ে থাকে ...

Mathematics Syllabus class - IX

পাটি গণিত, বীজগণিত , জ্যামিতি, অঙ্কন, পরিমিতি, পিথাগোরাসের উপপাদ্য : বিবৃতি ও প্রয়োগ, অংশীদারী কারবার ও তার বিভিন্ন সমস্যায় অনুপাত ও সমানুপাতের প্রয়োগ । ত্রৈরাশিকের ব্যাপকতর প্রয়োগ ।

Class IX Mathematics Study material

1 পাটিগনিত 1.1 পূর্বপাঠের পুনরালোচনা, 1.2 ব্যাপকতর ত্রৈরাশিক, 1.3 সরল সুদকষা, 1.4 অংশীদারী কারবার 1.5 ব্যাঙ্কের বিভিন্ন সঞ্চয় প্রকল্পের সঙ্গে পরিচিতি 2 বীজগণিত 1.1পূর্বপাঠের পুনরালোচনা 1.2 ভাগ প্রক্রিয়ার সাহায্যে গ.সা.গু. নির্ণয়