সামন্তরিকের পঞ্চম উপপাদ্য

Submitted by arpita pramanik on Thu, 08/27/2020 - 21:49

সামন্তরিকের পঞ্চম উপপাদ্য (Parallelogram Theorem)

সামন্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে। 

 

প্রমাণ:

পড়ল মনে করি ABCD একটি সামন্তরিক। এখানে AB ।। DC এবং AD ।। BC . AC এবং BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করেছে। 

আমাদের প্রমাণ করতে হবে AO = CO এবং BO = DO 

প্রমাণ : ত্রিভুজ AOB এবং ত্রিভুজ COD এর 

AB = DC 

ABO=CDO যেহেতু এরা একান্তর কোণ 

BAO=DCO যেহেতু এরা একান্তর কোণ 

অতএব ত্রিভুজ AOB  ত্রিভুজ COD

অতএব AO = CO ( সর্বসম ত্রিভুজের অনুরূপ বাহু )

এবং BO = OD ( সর্বসম ত্রিভুজের অনুরূপ বাহু )

অর্থাৎ O হল AC এবং BD কর্ণদ্বয়ের মধ্যবিন্দু। 

 

প্রয়োগ : রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখন্ডিত করে। 

রম্বস মনে করি ABCD একটি রম্বস এর AC এবং BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করেছে। 

আমাদের প্রমাণ করতে হবে AO = CO , BO = DO এবং AOB=90

প্রমাণ : যেহেতু রম্বস একটি সামন্তরিক সুতরাং তার কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করবে। 

অর্থাৎ  AO = CO এবং  BO = DO হবে। 

ত্রিভুজ AOB এবং ত্রিভুজ BOC এর 

AB = BC 

OB সাধারণ বাহু 

AO = CO

অতএব ত্রিভুজ AOB   ত্রিভুজ BOC

অতএব  AOB=BOC

এখন 

AOB+BOC=1802AOB=180AOB=90

অতএব রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখন্ডিত করে। 

 

ABCD সামন্তরিকের BAD ও BCD কোণের সমদ্বিখণ্ডক দুটি DC এবং AB বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে PAQC একটি সামন্তরিক। 

পৰ ABCD সামন্তরিকের  BAD ও BCD কোণের সমদ্বিখণ্ডক দুটি DC এবং AB বাহুকে যথাক্রমে P ও Q বিন্দুতে ছেদ করেছে।

প্রমাণ করতে হবে  PAQC একটি সামন্তরিক। 

প্রমাণ : ABCD সামান্তরিকের DC ।। AB এবং AP হল ছেদক। 

সুতরাং DPA=একান্তর PAQ

আবার PAQ=12DAB

PAQ=12DCB ( যেহেতু DAB=DCB )

PAQ=PCQ ( যেহেতু 12DCB=PCQ )

DPA=PCQ 

কিন্তু DPA ও PCQ হল অনুরূপ কোন এবং DC হল ছেদক। 

অতএব PA ।। CQ 

আবার AQ ।। PC ( যেহেতু সামান্তরিকের বিপরীত বাহু AB ।। DC )

APCQ চতুর্ভুজের PA ।। CQ ও AQ ।। PC .

সুতরাং APCQ একটি সামন্তরিক। 

 

প্রমাণ করতে হবে যে দুটি সমান্তরাল সরলরেখা ও তাদের একটি ছেদকের অন্তর্ভুক্ত অন্তঃকোণ গুলির সমদ্বিখন্ডকগুলি একটি আয়তকার চিত্র উৎপন্ন করে। 

রেসি মনে করি AB ও CD দুটি সমান্তরাল সরলরেখাকে PQ ছেদক যথাক্রমে E ও F বিন্দুতে ছেদ করেছে। EG ও EH যথাক্রমে BEF ও AEF কোণ দুটিকে এবং FG ও FH যথাক্রমে DFE ও CFE কোণ দুটিকে সমদ্বিখন্ডিত করেছে। 

প্রমাণ করতে হবে EHFG একটি আয়তক্ষেত্র। 

প্রমাণ : AEF= একান্তর EFD ( যেহেতু AB ।। CD এবং EF ছেদক )

সুতরাং , 12AEF=12EFD

অতএব HEF=EFG কিন্তু এরা একান্তর কোণ। 

অতএব HE ।। FG 

অনুরূপে HF ।। GE 

অতএব EHFG একটি সামন্তরিক । 

আবার HEG=12(AEF+BEF)=12×2×90

অতএব HEG=90

সুতরাং EHFG একটি আয়তক্ষেত্র । 

*****

Comments

Related Items

সামন্তরিকের ষষ্ঠ উপপাদ্য

কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করলে চতুর্ভুজটিকে সামান্তরিক বলে।

সামন্তরিকের চতুর্থ উপপাদ্য

কোনো চতুর্ভুজের বিপরীত কোণগুলি সমান হলে , চতুর্ভুজটি একটি সামান্তরিক হবে।

সামন্তরিকের তৃতীয় উপপাদ্য

কোনো চতুর্ভুজের বিপরীত বাহুগুলি সমান হলে , চতুর্ভুজটি একটি সামান্তরিক হবে।

সামন্তরিকের দ্বিতীয় উপপাদ্য

কোনো সামান্তরিকের (i) প্রতিটি কর্ণ সামান্তরিককে দুটি সর্বসম ত্রিভুজে বিভক্ত করে (ii) বিপরীত বাহুগুলির দৈর্ঘ্য সামন। (iii) বিপরীত কোণ গুলি মানে সমান।

সামন্তরিকের প্রথম উপপাদ্য

কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামান্তরিক হবে।