বহুপদী সংখ্যামালার ধর্ম

Submitted by arpita pramanik on Sat, 08/29/2020 - 23:48

বহুপদী সংখ্যামালার ধর্ম (Properties of Polynomials) :

দুটি বহুপদীয় রাশির যোগফল, বিয়োগফল ও গুণফল সর্বদা বহুপদীয় রাশি হয় । 

উদাহরণ : কোনো বিদ্যালয়ে ছাত্র ছাত্রীরা মোট [tex]\left( {{x^2} + 8} \right)[/tex] টি চারাগাছ লাগিয়েছে। কিন্তু শিক্ষক শিক্ষিকা ও অতিথিরা যথাক্রমে [tex]\left( {3{x^2} + 2x + 5} \right)[/tex] টি এবং [tex]\left( {{x^3} + 1} \right)[/tex] টি চারাগাছ লাগিয়েছে। তাহলে সবাই মিলে মোট কতগুলি চারাগাছ লাগানো হয়েছে 

মনে করি [tex]f\left( x \right) = {x^2} + 8[/tex] , [tex]g\left( x \right) = 3{x^2} + 2x + 5[/tex] এবং [tex]h\left( x \right) = {x^3} + 1[/tex]

অতএব 

[tex]\begin{array}{l}
f\left( x \right) + g\left( x \right) + h\left( x \right)\\
 = {x^2} + 8 + 3{x^2} + 2x + 5 + {x^3} + 1\\
 = {x^3} + 4{x^2} + 2x + 14
\end{array}[/tex]

সবাই মিলে মোট [tex]{x^3} + 4{x^2} + 2x + 14[/tex] টি  চারাগাছ লাগানো হয়েছে । 

 

উদারহণ : মনে করি [tex]f\left( x \right) = {x^2} + 8[/tex] এবং [tex]g\left( x \right) = 3{x^2} + 2x + 5[/tex] এই দুটি বহুপদী সংখ্যামালার বিয়োগফল নির্ণয় করতে হবে । 

[tex]\begin{array}{l}
g\left( x \right) - f\left( x \right)\\
 = \left( {3{x^2} + 2x + 5} \right) - \left( {{x^2} + 8} \right)\\
 = 3{x^2} + 2x + 5 - {x^2} - 8\\
 = 2{x^2} + 2x - 3
\end{array}[/tex]

দেখা যাচ্ছে তাদের বিয়োগফল একটি বহুপদী সংখ্যামালা 

 

উদাহরণ : মনে করি [tex]f\left( x \right) = {x^2} + 8[/tex] এবং [tex]g\left( x \right) = 3{x^2} + 2x + 5[/tex] এই দুটি বহুপদী সংখ্যামালার গুণফল নির্ণয় করতে হবে । 

[tex]\begin{array}{l}
g\left( x \right) \times f\left( x \right)\\
 = \left( {3{x^2} + 2x + 5} \right) \times \left( {{x^2} + 8} \right)\\
 = 3{x^2} \times \left( {{x^2} + 8} \right) + 2x \times \left( {{x^2} + 8} \right) + 5 \times \left( {{x^2} + 8} \right)\\
 = 3{x^4} + 24{x^2} + 2{x^3} + 16x + 5{x^2} + 40\\
 = 3{x^4} + 2{x^3} + 29{x^2} + 16x + 40
\end{array}[/tex]

 

উদাহরণ : y = 1 এর জন্য [tex]f\left( y \right) = {y^3} + 2y - 5[/tex] এর মান নির্ণয় কর 

y = 1 , [tex]f\left( y \right) = {y^3} + 2y - 5[/tex] এই অপেক্ষকে বসিয়ে পাই 

[tex]f\left( 1 \right) = {1^3} + 2 \times 1 - 5 = 1 + 2 - 5 =  - 2[/tex]

 

একটি সংখ্যা c কে f(x) বহুপদী সংখ্যামালার শূন্য বলা হবে যদি f(c) = 0 হয় । 

 

উদাহরণ : [tex]f\left( x \right) = 8 - x[/tex] এই বহুপদী সংখ্যামালার শূন্য কি হবে ?

[tex]\begin{array}{l}
f\left( 1 \right) = 8 - 1 = 7\\
f\left( 2 \right) = 8 - 2 = 6\\
f\left( 3 \right) = 8 - 3 = 5\\
f\left( 4 \right) = 8 - 4 = 4\\
f\left( 5 \right) = 8 - 5 = 3\\
f\left( 6 \right) = 8 - 6 = 2\\
f\left( 7 \right) = 8 - 7 = 1\\
f\left( 8 \right) = 8 - 8 = 0
\end{array}[/tex]

দেখা যাচ্ছে x = 8 এর জন্য বহুপদী সংখ্যামালা শূন্য হবে । 

বিকল্প পদ্ধতি : 

[tex]f\left( x \right) = 8 - x[/tex] এই বহুপদী সংখ্যামালা শূন্য হলে x এর মান কি হবে তা নির্ণয় করি 

[tex]\begin{array}{l}
8 - x = 0\\
 \Rightarrow x = 8
\end{array}[/tex]

উদাহরণ : 6 এই বহুপদী সংখ্যার পদ শূন্য কি হবে তা নির্ণয় করি । 

[tex]6 = 6{x^0}[/tex] দেখা যাচ্ছে x এর পরিবর্তে কোনো সংখ্যা বসালে 6 বহুপদী সংখ্যার পদ শূন্য পাবনা। কিন্তু এখানে [tex]x \ne 0[/tex] বসাতে হবে। কারণ [tex]{0^0}[/tex] হল অসংজ্ঞাত । 

অতএব শূন্য ছাড়া কোনো ধ্রূবক বহুপদী সংখ্যার শূন্য নেই । 

কিন্তু শূন্য বহুপদী সংখ্যার শূন্য কী হবে ?

প্রত্যেক বাস্তব সংখ্যার শূন্য বহুপদী সংখ্যার শূন্য। কারণ 0 কে লেখা যায় [tex]0 \cdot {x^3}[/tex] . x এর পরিবর্তে যেকোনো বাস্তব সংখ্যা বসালে [tex]0 \cdot {x^3}[/tex] এর মান শূন্য হবে। যেমন [tex]0 \cdot {5^3} = 0[/tex] , [tex]0 \cdot {3^3} = 0[/tex] ইত্যাদি। কিন্তু [tex]0 \cdot {x^0}[/tex] এর ক্ষেত্রে [tex]x \ne 0[/tex] বসাতে হবে। কারণ [tex]{0^0}[/tex] হল অসংজ্ঞাত ।

ভাগ পদ্ধতি ( Division Algorithm )

যদি কোনো বহুপদী রাশিমালা অপেক্ষক f(x) এমন হয় যে f(a) = 0 তখন অপেক্ষকটি ( x-a ) দ্বারা বিভাজ্য হবে। অর্থাৎ বহুপদী সংখ্যামালা সর্বদাই তার উৎপাদক দ্বারা বিভাজ্য হবে । 

 

বিভাজ্যতার কয়েকটি গুরুত্বপূর্ণ সূত্র 

সূত্র 1.

[tex]{x^n} - {a^n}[/tex] এই সংখ্যামালাটি সর্বদা x - a দ্বারা বিভাজ্য হবে যদি n যেকোনো ধনাত্মক জোড় অথবা বিজোড় সংখ্যা হয় । 

এই ভাগ পদ্ধতিটি হল 

[tex]\begin{array}{l}
\frac{{{x^n} - {a^n}}}{{x - a}} = {x^{n - 1}} + {x^{n - 2}}a + {x^{n - 3}}{a^2} + ........... + x{a^{n - 2}} + {a^{n - 1}}\\
 \Rightarrow {x^n} - {a^n} = \left( {x - a} \right)\left( {{x^{n - 1}} + {x^{n - 2}}a + {x^{n - 3}}{a^2} + ........... + x{a^{n - 2}} + {a^{n - 1}}} \right)
\end{array}[/tex]

 

সূত্র 2.

[tex]{x^n} - {a^n}[/tex] এই সংখ্যামালাটি x + a দ্বারা বিভাজ্য হবে যদি n একটি ধনাত্মক জোড় সংখ্যা হয়। ( কিন্তু n বিজোড় সংখ্যা হলে বিভাজ্য হবে না ) 

এই ভাগ প্রক্রিয়াটি হল 

[tex]\begin{array}{l}
\frac{{{x^n} - {a^n}}}{{x + a}} = {x^{n - 1}} - {x^{n - 2}}a + {x^{n - 3}}{a^2} - ............... + {a^{n - 2}}x - {a^{n - 1}}\\
 \Rightarrow {x^n} - {a^n} = \left( {x + a} \right)\left( {{x^{n - 1}} - {x^{n - 2}}a + {x^{n - 3}}{a^2} - ............... + {a^{n - 2}}x - {a^{n - 1}}} \right)
\end{array}[/tex]

 

সূত্র 3.

[tex]{x^n} + {a^n}[/tex] এই সংখ্যামালাটি x + a দ্বারা বিভাজ্য হবে যদি n একটি ধনাত্মক অযুগ্ম সংখ্যা হয়। ( কিন্তু যদি n যুগ্ম হয় তাহলে বিভাজ্য হবে না) ।

এই ভাগ প্রক্রিয়াটি হল 

[tex]\begin{array}{l}
\frac{{{x^n} + {a^n}}}{{x + a}} = {x^{n - 1}} - {x^{n - 2}}a + {x^{n - 3}}{a^2} - .......... + {\left( { - 1} \right)^{n - 2}}x{a^{n - 2}} + {\left( { - 1} \right)^{n - 1}}x{a^{n - 1}}\\
 \Rightarrow {x^n} + {a^n} = \left( {x + a} \right)\left( {{x^{n - 1}} - {x^{n - 2}}a + {x^{n - 3}}{a^2} - .......... + {{\left( { - 1} \right)}^{n - 2}}x{a^{n - 2}} + {{\left( { - 1} \right)}^{n - 1}}x{a^{n - 1}}} \right)
\end{array}[/tex]

 

সূত্র ৪.

[tex]{x^n} + {a^n}[/tex] এই সংখ্যামালাটি n যুগ্ম অথবা অযুগ্ম যাই হোকনা কেন x - a দ্বারা কখনোই বিভাজ্য হবে না । 

বিশেষ জ্ঞাতব্য : 

যদি n অযুগ্ম সংখ্যা হয় 

  1. [tex]{x^n} - {a^n}[/tex] এই সংখ্যামালাটি x - a দ্বারা বিভাজ্য হবে । 
  2. [tex]{x^n} - {a^n}[/tex] এই সংখ্যামালাটি x + a দ্বারা বিভাজ্য হবে না । 
  3. [tex]{x^n} + {a^n}[/tex] এই সংখ্যামালাটি x + a দ্বারা বিভাজ্য হবে । 
  4. [tex]{x^n} + {a^n}[/tex] এই সংখ্যামালাটি x - a দ্বারা বিভাজ্য হবে না ।

যদি n যুগ্ম সংখ্যা হয় 

  1. [tex]{x^n} - {a^n}[/tex] এই সংখ্যামালাটি x - a দ্বারা বিভাজ্য হবে । 
  2. [tex]{x^n} - {a^n}[/tex] এই সংখ্যামালাটি x + a দ্বারা বিভাজ্য হবে । 
  3. [tex]{x^n} + {a^n}[/tex] এই সংখ্যামালাটি x + a দ্বারা বিভাজ্য হবে না । 
  4. [tex]{x^n} + {a^n}[/tex] এই সংখ্যামালাটি x - a দ্বারা বিভাজ্য হবে না ।

*****

Comments

Related Items

জ্যামিতিক অঙ্কন - সম্পাদ্য

জ্যামিতিক অঙ্কন ---সম্পাদ্য

লগারিদম (Logarithm)

কোনো ধনাত্মক রাশি যদি অপর একটি ধনাত্মক রাশির ঘাতের সমান হয় , তবে ওই ধনাত্মক ঘাতের সূচককে ( Index of Power ) বলে প্রথম সারিটির লগারিদম (Logarithm) ।

ক্ষেত্রফল সংক্রান্ত উপপাদ্য

ক্ষেত্রফল হল কোনো ক্ষেত্রের পরিমাপ (Magnitude or measure). এই পরিমাপটি কোনো একক (Unit) সমেত প্রকাশ করা হয়। যেমন 50 বর্গ মিটার কোনো ক্ষেত্রের ক্ষেত্রফল। কোনো সমতলিক ক্ষেত্রের ক্ষেত্রফলের ধর্ম , ক্ষেত্রফল সংক্রান্ত উপপাদ্য (Theorems of Area) ...

ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য

ত্রিভুজ, সমবাহু ত্রিভুজ, ট্রাপিজিয়াম, চতুর্ভুজের বাহুগুলির ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য প্রমাণ ও তার প্রয়োগ

সামন্তরিকের ধর্ম

যে চতুর্ভুজের বিপরীত বাহুগুলি পরস্পর সমান্তরাল তাকে সামান্তরিক বলে। যে সামান্তরিকের একটি কোণ সমকোণ তাকে আয়তক্ষেত্র বলে। যে আয়তক্ষেত্রের একজোড়া সন্নিহিত বাহুর দৈর্ঘ্য সমান হলে তাকে বর্গক্ষেত্র বলে।