স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয় (Co-ordinate Geometry : Distance formula)
সূচনা (Introduction)
আমরা graph কাগজে যেমন বিভিন্ন বিন্দুকে স্থাপন করতে পারি তেমনি ওই বিন্দু গুলির সাহায্যে বিভিন্ন জ্যামিতিক চিত্র , সরলরেখা অঙ্কন করা যায় । দেখা যাচ্ছে বিন্দু গুলির স্থানাঙ্ক জানা থাকলে সেগুলি যোগ করে বিভিন্ন সমতলিক জ্যামিতিক চিত্র পাওয়া যায় । আবার বিভিন্ন বীজগাণিতিক দুই চল বিশিষ্ট রৈখিক সমীকরণের জ্যামিতিক আকার সম্মন্ধে ঠিক মতো ধারণা করা যায় ।
এইভাবে বীজগণিতের সাহায্যে বিভিন্ন জ্যামিতিক আকারের ধারণা গড়ে ওঠাকে স্থানাঙ্ক জ্যামিতি (Co-ordinate Geometry) বলা হয় ।
অর্থাৎ স্থানাঙ্ক জ্যামিতিতে বীজগণিতের সাহায্যে জ্যামিতির ধারণা করতে পারি
তাই স্থানাঙ্ক জ্যামিতি ব্যাপকতরভাবে বিজ্ঞানের বিভিন্ন শাখায় ব্যবহার করা হয় ।
মূলবিন্দু (0,0) থেকে অক্ষরেখার উপরে অবস্থিত যেকোনো বিন্দুর স্থানাঙ্ক নির্ণয়
এখানে দুটি লম্ব অক্ষ হল XOX' ও YOY' এবং O(0,0) হল মূলবিন্দু .
এখানে A(5,0) ও B(0,8) দুটি বিন্দু । আমরা পরিষ্কারভাবে বলতে পারি A ও B বিন্দু দুটি মূলবিন্দু থেকে যথাক্রমে 5 একক ও 8 একক দূরত্বে অবস্থিত । সুতরাং x অক্ষের উপরে অবস্থিত যেকোনো বিন্দুর স্থানাঙ্ক তার ভুজের ধনাত্মক মান । অনুরূপে y অক্ষের উপরে অবস্থিত যেকোনো বিন্দুর স্থানাঙ্ক হবে কোটির ধনাত্মক মান ।
লম্ব অক্ষের উপর অবস্থিত যেকোনো দুটি বিন্দুর দূরত্ব নির্ণয়
মনে করি A(x,0) ও B(0,y) দুটি বিন্দু যথাক্রমে x অক্ষ ও y অক্ষের উপরে অবস্থিত ।
মূলবিন্দু থেকে A বিন্দুর দূরত্ব হল x একক অর্থাৎ OA = x একক
অনুরূপে মূলবিন্দু থেকে B বিন্দুর দূরত্ব হল y একক অর্থাৎ OB = y একক
এখন পিথাগোরাসের উপপাদ্য ব্যবহার করে পাই
[tex]\begin{array}{l}
{\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}\\
\Rightarrow AB = \sqrt {{{\left( {OA} \right)}^2} + {{\left( {OB} \right)}^2}} = \sqrt {{x^2} + {y^2}}
\end{array}[/tex]
উদাহরণ : রোহিত x অক্ষের উপরে একটি বিন্দু M(6,0) এবং y অক্ষের উপরে একটি বিন্দু N(0,8) নিয়েছে । এখন MN এর দৈর্ঘ্য নির্ণয় করে দেখি ।
M বিন্দুর স্থানাঙ্ক (6,0) এবং N বিন্দুর স্থানাঙ্ক (0,8)
অতএব OM = 6 একক এবং ON = 8 একক
অতএব
[tex]\begin{array}{l}
MN\\
= \sqrt {{6^2} + {8^2}} \\
= \sqrt {36 + 64} \\
= \sqrt {100} \\
= 10
\end{array}[/tex]
অতএব MN = 10 একক ।
মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়
মনে করি P(x,y) যেকোনো বিন্দু। মূলবিন্দু O(0,0) থেকে এর দূরত্ব নির্ণয় করতে হবে ।
P(x,y) বিন্দু থেকে x অক্ষের উপর PM লম্ব টানা হল। অতএব M এর স্থানাঙ্ক হবে (x,0) .
এখন OM = x একক এবং PM = y একক ।
পিথাগোরাসের উপপাদ্য প্রয়োগ করে পাই
[tex]\begin{array}{l}
O{P^2} = O{M^2} + P{M^2}\\
\Rightarrow OP = \sqrt {O{M^2} + P{M^2}} = \sqrt {{x^2} + {y^2}}
\end{array}[/tex]
মূলবিন্দু থেকে P(x,y) বিন্দুর দূরত্ব হল [tex]\sqrt {{x^2} + {y^2}} [/tex] একক ।
উদাহরণ : মূলবিন্দু থেকে (3,4) বিন্দুর দূরত্ব নির্ণয় করো
মূলবিন্দু থেকে (3,4) বিন্দুর দূরত্ব
[tex] = \sqrt {{3^2} + {4^2}} [/tex] একক
[tex] = \sqrt {9 + 16} [/tex] একক
[tex] = \sqrt {25} [/tex] একক
= 5 একক
যেকোনো দুটি বিন্দুর মধ্যবর্তী দূরত্ব নির্ণয়
মনে করি A ও B দুটি বিন্দুর স্থানাঙ্ক হল যথাক্রমে [tex]\left( {{x_1},{y_1}} \right)[/tex] এবং [tex]\left( {{x_2},{y_2}} \right)[/tex] .
আমাদের A ও B বিন্দু দুটির মধ্যবর্তী দূরত্ব নির্ণয় করতে হবে ।
A ও B বিন্দু থেকে x অক্ষের উপরে দুটি লম্ব যথাক্রমে AM ও BN অঙ্কন করা হল ।
A বিন্দু থেকে BN এর উপর AP লম্ব অঙ্কন করলাম ।
A ও B দুটি বিন্দুর স্থানাঙ্ক হল যথাক্রমে [tex]\left( {{x_1},{y_1}} \right)[/tex] এবং [tex]\left( {{x_2},{y_2}} \right)[/tex] .
অতএব [tex]OM = {x_1}[/tex] এবং [tex]ON = {x_2}[/tex]
[tex]AM = {y_1}[/tex] এবং [tex]BN = {y_2}[/tex]
AP = MN = ON - OM = [tex]{x_2} - {x_1}[/tex]
এবং BP = BN - PN = BN - AM = [tex]{y_2} - {y_1}[/tex]
অতএব সমকোণী ত্রিভুজ ABP তে পিথাগোরাগের উপপাদ্য প্রয়োগ করে পাই
[tex]\begin{array}{l}
AB\\
= \sqrt {A{P^2} + B{P^2}} \\
= \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
\end{array}[/tex]
অতএব [tex]A\left( {{x_1},{y_1}} \right)[/tex] ও [tex]B\left( {{x_2},{y_2}} \right)[/tex] বিন্দুদ্বয়ের মধ্যবর্তী দূরত্ব হল
[tex]\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} [/tex] একক .
উদাহরণ : (2,4) ও (5,7) বিন্দুর দূরত্ব নির্ণয় করো
এখানে [tex]{x_1} = 2[/tex] , [tex]{y_1} = 4[/tex] , [tex]{x_2} = 5[/tex] এবং [tex]{y_2} = 7[/tex]
অতএব নির্ণেয় দূরত্ব
[tex] = \sqrt {{{\left( {5 - 2} \right)}^2} + {{\left( {7 - 4} \right)}^2}} [/tex] একক
[tex] = \sqrt {{3^2} + {3^2}} [/tex] একক
[tex] = \sqrt {9 + 9} [/tex] একক
[tex] = \sqrt {18} [/tex] একক
[tex] = 9\sqrt 2 [/tex] একক
*****