ভাগশেষ উপপাদ্য

Submitted by arpita pramanik on Sat, 08/29/2020 - 23:42

ভাগশেষ উপপাদ্য (Remainder Theorem)

f(x) একটি বহুপদী সংখ্যামালা যার মাত্রা [tex]n\left( {n \ge 1} \right)[/tex] এবং a যেকোনো একটি বাস্তব সংখ্যা । f(x) কে ( x-a ) দ্বারা ভাগ করলে ভাগশেষ হবে f(a) ।

প্রমাণ : মনে করি f(x) একটি বহুপদী সংখ্যামালা । 

f(x) কে ( x-a ) দ্বারা ভাগ করলে অনন্য ভাগফল q(x) এবং অনন্য ভাগশেষ r(x) পাই । 

অতএব [tex]f\left( x \right) = \left( {x - a} \right)q\left( x \right) + r\left( x \right)..........(i)[/tex]

r(x) এর মাত্রা ( x-a ) এর মাত্রা অপেক্ষা সর্বদা কম হবে। এখানে দেখা যাচ্ছে ( x-a ) এর মাত্রা হল 1 ।

অতএব r(x) এর মাত্রা এর মাত্রা হবে শূন্য । 

অতএব r(x) একটি  ধ্রূবক । 

মনে করি r(x) = R 

অতএব (i) নং থেকে পাই 

[tex]f\left( x \right) = \left( {x - a} \right)q\left( x \right) + R[/tex] ( এটি একটি অভেদ )

x = a বসিয়ে পাই 

[tex]\begin{array}{l}
f\left( a \right) = \left( {a - a} \right)q\left( a \right) + R\\
 \Rightarrow f\left( a \right) = R
\end{array}[/tex]

( প্রমাণিত )

 

উদাহরণ : [tex]f\left( x \right) = {x^3} - 2{x^2} + 6x - 1[/tex] বহুপদী সংখ্যামালাকে ( x - 2 ) দিয়ে ভাগ করলে কি ভাগশেষ পাওয়া যায় ?

এখন [tex]x - 2 = 0 \Rightarrow x = 2[/tex]

অতএব ( x - 2 ) বহুপদী সংখ্যামালা শূন্য হবে যখন x = 2 হবে । 

ভাগশেষ উপপাদ্য থেকে আমরা জানি [tex]f\left( x \right) = {x^3} - 2{x^2} + 6x - 1[/tex] কে ( x - 2 ) দিয়ে ভাগ করলে ভাগশেষ হবে f(2) .

অতএব নির্ণেয় ভাগশেষ 

[tex]\begin{array}{l}
f\left( 2 \right)\\
 = {2^3} - 2 \times {2^2} + 6 \times 2 - 1\\
 = 8 - 8 + 12 - 1\\
 = 11
\end{array}[/tex]

 

উদাহরণ : ( x-2 ) , [tex]f\left( x \right) = {x^3} - x - 6[/tex] এই বহুপদী রাশিমালার উৎপাদক কিনা পরীক্ষা করি । 

এখন [tex]x - 2 = 0 \Rightarrow x = 2[/tex]

অতএব ( x - 2 ) বহুপদী সংখ্যামালা শূন্য হবে যখন x = 2 হবে । 

ভাগশেষ উপপাদ্য থেকে আমরা জানি [tex]f\left( x \right) = {x^3} - x - 6[/tex] কে ( x - 2 ) দিয়ে ভাগ করলে ভাগশেষ হবে f(2) .

অতএব নির্ণেয় ভাগশেষ 

[tex]\begin{array}{l}
f\left( 2 \right)\\
 = {2^3} - 2 - 6\\
 = 8 - 8\\
 = 0
\end{array}[/tex]

সুতরাং দেখা যাচ্ছে ভাগশেষ শূন্য । 

অতএব  ( x-2 ) , [tex]f\left( x \right) = {x^3} - x - 6[/tex] এই বহুপদী রাশিমালার উৎপাদক । 

 

উদাহরণ : যদি [tex]a{x^2} + 3x - 5[/tex] এবং [tex]{x^2} - 2x + a[/tex] বহুপদী সংখ্যামালাদ্বয়কে ( x-3 ) দ্বারা ভাগ করলে একই ভাগশেষ থাকে তবে a এর মান নির্ণয় করো । 

মনে করি [tex]f\left( x \right) = a{x^2} + 3x - 5[/tex] এবং [tex]g\left( x \right) = {x^2} - 2x + a[/tex]

f(x) কে ( x-3 ) দ্বারা ভাগ করলে ভাগশেষ পাই 

[tex]\begin{array}{l}
f\left( 3 \right)\\
 = a \times {3^2} + 3 \times 3 - 5\\
 = 9a + 9 - 5\\
 = 9a + 4
\end{array}[/tex]

g(x) কে ( x-3 ) দ্বারা ভাগ করলে ভাগশেষ পাই 

[tex]\begin{array}{l}
g\left( 3 \right)\\
 = {3^2} - 2 \times 3 + a\\
 = 9 - 6 + a\\
 = 3 + a
\end{array}[/tex]

প্রশ্নানুসারে 

[tex]\begin{array}{l}
9a + 4 = 3 + a\\
 \Rightarrow 8a =  - 1\\
 \Rightarrow a =  - \frac{1}{8}
\end{array}[/tex]

*****

Comments

Related Items

সূচকের নিয়মাবলি (Laws of Index)

কোনো সংখ্যাকে সেই সংখ্যা দ্বারা একাধিকবার গুণ করার প্রক্রিয়াকে প্রকাশ করা হয় সংখ্যাটির মাথার ডানদিকে সংখ্যাটিকে যত সংখ্যক বার গুণ করা হয়েছে সেই সংখ্যাটি বসিয়ে। এই প্রক্রিয়াকে সূচকের নিয়ম বলে।

ব্যাপকতর ত্রৈরাশিক (Rules of Three)

ত্রৈরাশিক পদ্ধতির প্রতিষ্ঠিত সূত্রটিকে সম্প্রসারিত আকারে ব্যবহার করাকে ব্যাপকতর ত্রৈরাশিক বলে। প্রতিটি বিষয়ের মান দুটি দিয়ে ভগ্নাংশ তৈরির ক্ষেত্রে ভগ্নাংশটি প্রকৃত না অপ্রকৃত হবে তার সিদ্ধান্ত নেবার সময় ধরে নিতে হবে যে অপর বিষয়গুলির মান অপরিবর্তিত থাকছে ।

পাটিগনিত - পূর্বপাঠের পুনরালোচনা

পূর্বপাঠের পুনরালোচনা- গড় (Mean), সরল গড়, গড় মানের চেয়ে মোট কমের পরিমান = গড় মানের চেয়ে মোট বেশীর পরিমান, গড়মানকে তথ্যগুলির কেন্দ্রীয় মান বা প্রতিনিধিত্ব মূলক মান হিসাবে ধরা হয়ে থাকে ...

Mathematics Syllabus class - IX

পাটি গণিত, বীজগণিত , জ্যামিতি, অঙ্কন, পরিমিতি, পিথাগোরাসের উপপাদ্য : বিবৃতি ও প্রয়োগ, অংশীদারী কারবার ও তার বিভিন্ন সমস্যায় অনুপাত ও সমানুপাতের প্রয়োগ । ত্রৈরাশিকের ব্যাপকতর প্রয়োগ ।

Class IX Mathematics Study material

1 পাটিগনিত 1.1 পূর্বপাঠের পুনরালোচনা, 1.2 ব্যাপকতর ত্রৈরাশিক, 1.3 সরল সুদকষা, 1.4 অংশীদারী কারবার 1.5 ব্যাঙ্কের বিভিন্ন সঞ্চয় প্রকল্পের সঙ্গে পরিচিতি 2 বীজগণিত 1.1পূর্বপাঠের পুনরালোচনা 1.2 ভাগ প্রক্রিয়ার সাহায্যে গ.সা.গু. নির্ণয়