বীজগণিত - পূর্বপাঠের পুনরালোচনা

Submitted by arpita pramanik on Wed, 02/16/2011 - 00:10

বীজগণিত - পূর্বপাঠের পুনরালোচনা :

বীজ গণিতের সূত্রাবলী [Algebraic Formula]

চিহ্ন সংক্রান্ত সূত্র ( Formula of Sign ) :

(+)×(+)=+

(+)×()=  

()×(+)=

()×()=+

 

সূচক নিয়মাবলী  (Law of Indices) :

1.  a0=1;a0

2.  aman=am+n

3.  aman=amn

4.  (ab)m=ambm

5.  (ab)m=ambm

6.  (am)n=amn

7.  am=1am

8.  am=an হলে m=n;a0,1 বা (-1)

9.  am=bm হলে a=b;m0

 

উৎপাদক ও সমাধান সংক্রান্ত নিয়মাবলী  (Some Laws of Factor and Solution) :

1.  x চলের কোনো রাশিমালার একটি উৎপাদক ( x - a ) হলে ওই রাশিমালার x এর স্থলে a বসালে তার মান শূন্য হবে ।

2.  x চলের কোনো রাশিমালাতে x এর স্থলে a বসালে যদি রাশিমালাটির মান শূন্য হয় , তাহলে ( x - a ) ওই রাশিমালাটির একটি উৎপাদক হবে ।

3.  x চলযুক্ত কোনো সমীকরণের x = a একটি সমাধান হলে সমীকরণটিতে x = a বসালে  সমীকরণটির উভয়পক্ষের মান সমান হবে ।

4.  x , y এবং  z  বা  একাধিক চলযুক্ত সমীকরণগুলির সমাধান x = a, y = b , z = c ইত্যাদি হলে , সমীকরণগুলিতে x = a , y = b , z = c ইত্যাদি বসালে সমীকরণগুলির উভয় পক্ষের মান সমান হবে  ।

 

বিভিন্ন সূত্রাবলি [ Different Formula ] :

1.  (a+b)2=a2+2ab+b2

     (a+b)2=(ab)2+4ab

 

2.  (ab)2=a22ab+b2

     (ab)2=(a+b)24ab

 

3.  (a+b+c)2=a2+b2+c2+2ab+2bc+2ca

 

4.  a2+b2=(a+b)22ab

      a2+b2=(ab)2+2ab

 

5.  a2b2=(a+b)(ab)

 

6.  2(a2+b2)=(a+b)2+(ab)2

 

7.  4ab=(a+b)2(ab)2

 

8.  ab=(a+b2)2(ab2)2

 

9.  (a+b)3=a3+3a2b+3ab2+b3

     (a+b)3=a3+b3+3ab(a+b)

 

10.  (ab)3=a33a2b+3ab2b3

       (ab)3=a3b33ab(ab)

 

11.  a3+b3=(a+b)33ab(a+b)  

      a3+b3=(a+b)(a2ab+b2)

 

12.  a3b3=(ab)3+3ab(ab)

      a3b3=(ab)(a2+ab+b2)

 

13.  a2+b2+c2abbcca=12[(ab)2+(bc)2+(ca)2]

 

14.  (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

 

15.  a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)  

*****

Related Items

সামন্তরিকের প্রথম উপপাদ্য

কোনো চতুর্ভুজের একজোড়া বিপরীত বাহু সমান এবং সমান্তরাল হলে অপর জোড়া বিপরীত বাহুও সমান এবং সমান্তরাল হবে অর্থাৎ চতুর্ভুজটি একটি সামান্তরিক হবে।

উৎপাদকে বিশ্লেষণ (Factorisation)

মনে করি x রাশির যদি সর্বোচ্চ ঘাত 2 হয় সেই রাশিকে দ্বিঘাত রাশি বলে। যেমন Equation1 এই রাশির সর্বোচ্চ ঘাত 2 . এর তিনটি পদের সোহাগ যথাক্রমে 1 , 3 , 2. এবার এই মধ্যে সোহাগ 3 কে বিশ্লেষণ করে কিরূপে রাশিটিকে উৎপাদকে বিশ্লেষণ

স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয়

বীজগণিতের সাহায্যে বিভিন্ন জ্যামিতিক আকারের ধারণা গড়ে ওঠাকে স্থানাঙ্ক জ্যামিতি ( Co-ordinate Geometry ) বলা হয়। অর্থাৎ স্থানাঙ্ক জ্যামিতিতে বীজগণিতের সাহায্যে জ্যামিতির ধারণা করতে পারি তাই স্থানাঙ্ক জ্যামিতি ব্যাপকতরভাবে বিজ্ঞানের বিভিন্ন শাখায় ব্যবহার করা হয়।

সরল সুদ কষার উদাহরণ ও সমাধান

সমস্যাটিতে তিনটি বিষয় আছে বলে এখানে বহুরাশিক পদ্ধতি প্রয়োগ করতে হবে । যথা (i) আসল ও মোট সুদের মধ্যে এবং (ii) সময় ও মোট সুদের মধ্যে । (i) সময় অপরিবর্তিত আছে ধরে নিলে, আসলের সঙ্গে মোট সুদের সরল সম্পর্ক । এখানে আসল বেড়েছে তাই সুদ বাড়বে অর্থাৎ ভগ্নাংশটি

লাভ-ক্ষতি সংক্রান্ত অঙ্কের সমাধান

লাভ-ক্ষতি সংক্রান্ত অংকের সমাধান (Solution of Profit and Loss ), বিভিন্ন পরীক্ষায় আগত প্রশ্নপত্র আলোচনা করা হলো