বিভিন্ন প্রকার রাশিমালা

Submitted by arpita pramanik on Sat, 08/29/2020 - 23:59

বিভিন্ন প্রকার রাশিমালা (Different types of Expression)

 

বীজগাণিতিক রাশিমালা ( Algebraical Expression ) দুইপ্রকার 

  1. সরল রাশি ( Simple Expression ) বা এক পদীয় ( Monomial )
  2. জটিল রাশি ( Complex Expression )

জটিল রাশি ( Complex Expression ) আবার তিন প্রকার 

  1. দ্বিপদরাশি ( Binomial )
  2. ত্রিপদরাশি ( Trinomial )
  3. বহুপদীয় রাশি ( Polynomial )
পোলো

 

সরল রাশি ( Simple Expression ) বা এক পদীয় ( Monomial ) : কোনো বীজগাণিতিক রাশিমালাতে কেবলমাত্র একটি পদ থাকলে তাকে সরল রাশি বলে । যেমন , [tex]2x[/tex] , [tex]a \div b[/tex] , [tex]\frac{{4a \times 5c}}{b}[/tex] ইত্যাদি । 

দ্বিপদরাশি ( Binomial ) : দুই পদযুক্ত রাশিমালাকে দ্বিপদরাশি (Binomial) বলে । যেমন , [tex]a + x[/tex] , [tex]2{x^2} + 3[/tex] , [tex]5\frac{x}{y} - {x^3}[/tex]  ইত্যাদি । 

ত্রিপদরাশি ( Trinomial ) : কোনো রাশিমালাতে তিনটি পদ থাকলে তাকে ত্রিপদরাশি (Trinomial) বলে । যেমন , [tex]a + b + c[/tex] , [tex]{x^4} + 5{y^2} - z[/tex] , [tex]2x - 3\frac{y}{z} + {x^3}[/tex] ইত্যাদি । 

বহুপদীয় রাশি ( Polynomial ) : তিনটির বেশি পদ বিশিষ্ট রাশিমালাকে বহুপদীয় রাশি (Polynomial) বলে । যেমন , [tex]{x^3} + 3xy - z + 5x{y^2}[/tex] , [tex]5{z^2} + 3{y^2} - {x^3}{z^3} - {y^4}xz + 7xyz[/tex] ইত্যাদি ।

মনে রাখতে হবে 8 , 1 , -5 , 10 ইত্যাদি এরাও কিন্তু বহুপদী সংখ্যামালা এদেরকে ধ্রূবক বহুপদী সংখ্যামালা (Constant Polynomial) বলে । কিন্তু (0) শূন্য কে শূন্য বহুপদী সংখ্যামালা (Zero Polynomial) বলে । 

 

অপেক্ষক এবং চলমানরাশি ( Function and Variables ) : 

কোনো বর্ণ দিয়ে প্রকাশিত বীজগাণিতিক রাহিমালাকে ওই বর্ণের অপেক্ষক বলা হয় এবং ওই বর্ণটিকে ওই অপেক্ষকের চলমান রাশি বলা হয় । অর্থাৎ অপেক্ষক নির্ণয়কারী বর্ণকেই চলমান রাশি বলা হয় । 

যেমন , [tex]{x^2} + 2x + 1[/tex] এই রাশিকে x এর অপেক্ষক বলা হয় । আবার x হল এই অপেক্ষকের চলরাশি । 

[tex]{x^3} + 3{x^2}y - 3x{y^2}[/tex] এই রাশিকে x এবং y এর অপেক্ষক বলা হয় । আবার x এবং y হল এই অপেক্ষকের চলরাশি ।

অপেক্ষক সাধারণত প্রকাশ করা হয় [tex]f\left( x \right),g\left( x \right),\phi \left( x \right),\psi \left( x \right)[/tex] , [tex]f\left( {x,y} \right)[/tex]ইত্যাদি সংকেত দ্বারা । 

অপেক্ষক প্রধাণত দুই প্রকার হয় 

  1. অখন্ড অপেক্ষক ( Integral function )
  2. মূলদ অপেক্ষক ( Rational function )

 

অখন্ড অপেক্ষক ( Integral function ) : যে অপেক্ষকের চলরাশিগুলি হরে অবস্থান করে না তাকে অখন্ড অপেক্ষক বলে। যেমন [tex]{x^2} + 2x + 3[/tex]

মূলদ অপেক্ষক ( Rational function ) : যে অপেক্ষকের চলরাশিগুলির সূচক ভগ্নাংশ হয় না তাকে মূলদ অপেক্ষক বলে। যেমন [tex]{x^3} + 2{x^2} + 3y[/tex] , [tex]5{x^4} + 6x - 3{y^2}[/tex]

 

বহুপদীয় রশির ঘাত হল প্রদত্ত চলরাশিগুলির সর্বোচ্চ ঘাত বা মাত্রা ( degree )।

যেমন [tex]f\left( x \right) = 5{x^3} - 3x + 8[/tex] এই বহুপদী সংখ্যামালার মাত্রা হল 3 . আবার [tex]g\left( x \right) = 5{x^{15}} - 3{x^2} + 8[/tex] এই বহুপদী সংখ্যামালার মাত্রা হল 15 .

শূন্য ছাড়া যেকোনো বহুপদী সংখ্যামালার মাত্রা 0 . যেমন  [tex]8 = 8{x^0}[/tex] , [tex] - 5 =  - 5{x^0}[/tex] . কিন্তু শূন্য বহুপদী সংখ্যামালার মাত্রা অসংজ্ঞাত। যেহেতু [tex]0 = 0{x^0}[/tex] , [tex]0 = 0{x^{10}}[/tex] ।

*****

Comments

Related Items

জ্যামিতি (Geometry)

লেখচিত্র ( Graph ), সামান্তরিকের ধর্ম (Properties of Parallelogram), স্থানাঙ্ক জ্যামিতি : দূরত্ব নির্ণয় ( Co-ordinate Geometry : Distance formula ), ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য ( Transversal and Mid-Point Theorem )

বাস্তব সংখ্যা (Real Number)

মূলদ সংখ্যার সাথে অমূলদ সংখ্যা গুলিকে একত্রিত করে যে সকল সংখ্যা পাওয়া যায় , তাদের বাস্তব সংখ্যা বলে। বাস্তব সংখ্যার দলকে R চিহ্ন দ্বারা প্রকাশ করা হয়।

লেখচিত্র (Graph)

লেখচিত্র বলতে কি বোঝায় এবং ইহার প্রয়োজনীয়তা সম্মন্ধে তাহাদের স্পষ্ট ধারণা থাকা আবশ্যক। প্রাত্যহিক জীবনে লেখচিত্রের ব্যবহার অপরিহার্য। রোগীর তাপমাত্রা হ্রাস বৃদ্ধি , শিল্প প্রতিষ্ঠানে উৎপাদন হার , দ্রব্যমূলের হ্রাস বৃদ্ধি ইত্যাদি বহু তথ্য

বীজগণিত - পূর্বপাঠের পুনরালোচনা

পূর্বপাঠের পুনরালোচনা - চিহ্ন সংক্রান্ত সূত্র (Formula of Sign) , সূচক নিয়মাবলী (Law of Indices), উৎপাদক ও সমাধান সংক্রান্ত নিয়মাবলী (Some Laws of Factor and Solution), বিভিন্ন সূত্রাবলি (Different Formula)