WBJEE Mathematics Question Paper 2013 (Eng)

Submitted by administrator on Thu, 07/10/2014 - 21:48

1.  A point P lies on the circle x2+y2=169. If Q = (5, 12) and R = (-12, 5), then the angle QPR is

(A) π6       (B) π4       (C) π3       (D) π2

Ans: (B)

 

2.  A circle passing through (0,0), (2,6), (6,2) cuts the x-axis at the point P ≠ (0,0). Then the length of OP, where O is origin, is

(A) 52         (B) 52       (C) 5        (D) 10

Ans: (C)

 

3. The locus of the midpoints of the chords of an ellipse x2+4y2=4 that are drawn form the positive end of the minor axis, is

(A) a circle with centre (12,0) and radius 1

(B) a parabola with focus (12,0) and directrix x = -1

(C) an ellipse with centre (0,12), major axis 1 and minor axis 12

(D) an hyperbola with centre (0,12), transverse axis 1 and conjugate axis 12

Ans: (No Option is correct)

 

4. A point moves so that the sum of squares of its distances from the points (1,2) and (-2,1) is always 6. Then its locus is

(A) the straight line y32=3(x+12)

(B) a circle with centre (12,32) and radius 12

(C) a parabola with focus (1,2) and directrix passing through (-2,1)

(D) an ellipse with foci (1,2) and (-2,1)

Ans: (B)

 

5.  For the variable t, the locus of the points of intersection of lines x2y=t and x+2y=1t is

(A) the straight line x=y

(B) the circle with centre at the origin and radius 1

(C) the ellipse with centre at the origin and one focus (25,0)

(D) the hyperbola with centre at the origin and one focus (52,0)

Ans: (D)

 

6.  Let P=(cosπ4sinπ4sinπ4cosπ4) and X=(1212). Then P3X is equal to

(A) (01)        (B) (1212)        (C) (10)        (D) (1212)

Ans: (C)

 

7.  The number of solutions of the equation x+y+z = 10 in positive integers x, y, z, is equal to

(A) 36      (B) 55       (C) 72       (D) 45

Ans: (A)

 

8.   For 0P,Qπ2, if sinP+cosQ=2, then the value of tan(P+Q2) is equal to

(A) 1       (B) 12         (C) 12        (D) 32

Ans: (A)

 

9.  If α and β are the roots of x2x+1=0, then the value of α2013+β2013 is equal to

(A) 2      (B) -2       (C) -1        (D) 1

Ans: (B)

 

10.  The value of the integral +11{x2013e|x|(x2+cosx)+1e|x|}dx is equal to

(A) 0       (B) 1e1        (C) 2e1        (D) 2(1e1)

Ans: (D)

 

11.   Let

f(x)=2100x+1,

g(x)=3100x+1.

Then the set of real numbers x such that f(g(x))=x is

(A) empty         (B)  a singleton        (C) a finite set with more than one element         (D) infinite

Ans: (B)

 

12.  The limit of xsin(e1/x) as x0

(A) is equal to 0      (B) is equal to 1       (C) is equal to e/2        (D) does not exist

Ans: (A)

 

13. Let I=(100010001) and P=(100010002). Then the matrix P3+2P2 is equal to

(A) P       (B) I - P       (C) 2I + P        (D) 2I - P

Ans: (C)

 

14.  If α,β are the roots of the quadratic equation x2+ax+b=0,(b0); then the quadratic equation whose roots are

α1β, β1α is

(A) ax2+a(b1)x+(a1)2=0

(B) bx2+a(b1)x+(b1)2=0

(C) x2+ax+b=0

(D) abx2+bx+a=0

Ans: (B)

 

15.  The value of 1000[11×2+12×3+13×4+...+1999×1000] is equal to

(A) 1000        (B) 999        (C) 1001         (D) 1/999

Ans: (B)

 

16.  The value of the determinant

|1+a2b22ab2b2ab1a2+b22a2b2a1a2b2|

is equal to

(A) 0        (B) (1+a2+b2)         (C) (1+a2+b2)2         (D) (1+a2+b2)3

Ans: (D)

 

17.  If the distance between the foci of an ellipse is equal to the length of the latus rectum, then its eccentricity is

(A) 14(51)         (B) 12(5+1)         (C) 12(51)        (D) 14(5+1)

Ans: (C)

 

18.   For the curve x² + 4xy + 8y² = 64 the tangents are parallel to the x-axis only at the points

(A) (0,2√2) and (0,-2√2)      (B) (8,-4) and (-8,4)      (C) (8√2, -2√2) and (-8√2, 2√2)       (D) (8,0) and (-8,0)

Ans: (B)

 

19.  The value of I=π40(tann+1x)dx+12π20tann1(x/2)dx is equal to

(A) 1n        (B) n+22n+1        (C) 2n1n        (D) 2n33n2

Ans: (A)

 

20.  Let ƒ(θ) = (1 + sin²θ)(2 - sin²θ). Then for all values of θ

(A) ƒ(θ) > 94        (B) ƒ(θ) < 2        (C) ƒ(θ) > 114       (D) 2 ≤ ƒ(θ) ≤ 94

Ans: (D)

 

21.   Let f(x)={x33x+2x<2x36x2+9x+2x2 Then

(A) limx2f(x) does not exist

(B) ƒ is not continuous at x = 2

(C) ƒ is continuous but not differentiable at x = 2

(D) ƒ is continuous and differentiable at x = 2

Ans: (C)

 

22.  The limit of 1000n=1(1)nxn as x

(A) does not exist

(B) exist and equals to 0

(C) exists and approaches +

(D) exists and approaches

Ans: (C)

 

23.   If f(x)=ex(x2)2 then

(A) ƒ is increasing in (,0) and (2,) and decreasing in (0,2)

(B) ƒ is increasing in (,0) and decreasing in (0,)

(C) ƒ is increasing in (2,) and decreasing in (,0)

(D) ƒ is increasing in (0,2) and decreasing in (,0) and (2,)

Ans: (A)

 

24.  Let f:RR be such that f is injective and f(x)f(y)=f(x+y) for all x,yR. If f(x),f(y),f(z) are in G.P., then x,y,z are in

(A) A.P. always

(B) G.P. always

(C) A.P. depending on the values of x, y, z

(D) G.P. depending on the values of x, y, z

Ans: (A)

 

25.  The number of solutions of the equation

12log3(x+1x+5)+log9(x+5)2=1 is

(A) 0       (B) 1        (C) 2         (D) infinite

Ans: (B)

 

26.  The area of the region bounded by the parabola y=x24x+5 and the straight line y=x+1 is

(A) 1/2        (B) 2         (C) 3        (D) 9/2

Ans: (D)

 

27.  The value of the integral

21ex(logex+x+1x)dx is

(A) e2(1+loge2)       (B) e2e        (C) e2(1+loge2)e         (D) e2e(1+loge2)

Ans: (C)

 

28.   Let P=1+12×2+13×22+......

and Q=11×2+13×4+15×6+......

Then

(A) P = Q       (B)  2P = Q        (C) P = 2Q          (D) P = 4Q

Ans: (C)

 

29.  Let f(x)=sinx+2cos2x, π4x3π4. Then ƒ attains its

(A) minimum at x=π4

(B) maximum at x=π2

(C) minimum at x=π2

(D) maximum at x=sin1(14)

Ans: (C)

 

30.  Each of a and b can take values 1 or 2 with equal probability. The probability that the equation ax² + bx + 1 = 0 has real roots, is equal to

(A) 12        (B) 14         (C) 18         (D) 116

Ans: (B)

 

31.  There are two coins, one unbiased with probability 12 of getting heads and the other one is biased with probability 34 of getting heads. A coin is selected at random and tossed. It shows heads up. Then the probability that the unbiased coin was selected is

(A) 23         (B) 35         (C) 12        (D) 25

Ans: (D)

 

32.  For the variable t, the locus of the point of intersection of the lines 3tx - 2y + 6t = 0 and 3x + 2ty - 6 = 0 is

(A) the ellipse x24+y29=1

(B) the ellipse x29+y24=1

(C) the hyperbola x24y29=1

(D) the hyperbola x29y24=1

Ans: (A)

 

33.  Cards are drawn one-by-one without replacement from a well shuffled pack of 52 cards. Then the probability that a face card (Jack, Queen or King) will appear for the first time on the third turn is equal to

(A) 3002197        (B) 3685        (C) 1285        (D) 451

Ans: (C)

 

34.  Lines x + y = 1 and 3y = x + 3 intersect the ellipse x² + 9y² = 9 at the points P,Q,R. The area of the triangle PQR is

(A) 365         (B) 185          (C) 95         (D) 15

Ans: (B)

 

35.  The number of onto functions from the set {1, 2,.....,11} to set {1, 2,.....,10} is

(A) 5×|11_         (B)  |10_         (C) |11_2       (D) 10×|11_

Ans: (D)

 

36.  The limit of [1x2+(2013)xex1+1ex1] as x0

(A) approaches + ∞       (B) approaches - ∞        (C) is equal to loge(2013)        (D) does not exist

Ans: (A)

 

37.  Let z1=2+3i and z2=3+4i be two points on the complex plane. Then the set of complex numbers z satisfying |zz1|2+|zz2|2=|z1z2|2 represents

(A) a straight line         (B) a point          (C) a circle          (D) a pair of straight line

Ans: (C)

 

38.  Let p(x) be a quadratic polynomial with constant term 1. Suppose p(x) when divided by x-1 leaves remainder 2 and when divided by x+1 leaves remainder 4. Then the sum of the roots of p(x) = 0 is

(A) -1       (B) 1       (C) 12        (D) 12

Ans: (D)

 

39.   Eleven apples are distributed among a girl and a boy. Then which one of the following statements is true ?

(A) At least one of them will receive 7 apples

(B) The girl receives at least 4 apples or the boy receives at least 9 apples

(C) The girl receives at least 5 apples or the boy receives at least 8 apples

(D) The girl receives at least 4 apples or the boy receives at least 8 apples

Ans: ()

 

40.  Five numbers are in H.P. The middle term is 1 and the ratio of the second and the fourth terms is 2 : 1. Then the sum of the first three terms is

(A) 11/2        (B) 5        (C) 2        (C) 14/3

Ans: (A)

 

41.  The limit of {1x1+x1+1x2} as x0

(A) does not exist        (B) is equal to 1/2        (C) is equal to 0        (D) is equal to 1

Ans: (A)

 

42.  The maximum and minimum values of cos6θ+sin6θ are respectively

(A) 1 and 1/4        (B) 1 and 0        (C) 2 and 0        (D) 1 and 1/2

Ans: (A)

 

43.  If a, b, c are in A.P., then the straight line ax + 2by + c = 0 will always pass through a fixed point whose co-ordinates are

(A) (1, -1)        (B) (-1, 1)         (C) (1, -2)         (D) (-2, 1)

Ans: (A)

 

44.  If one end of a diameter of the circle 3x2+3y29x+6y+5=0 is (1, 2), then the other end is

(A) (2, 1)         (B) (2, 4)         (C) (2, -4)        (D) (-4, 2)

Ans: (C)

 

45.  The value of cos²75° + cos²45° + cos²15° - cos²30° - cos²60° is

(A) 0        (B) 1        (C) 1/2         (D) 1/4

Ans: (C)

 

46.  Suppose z=x+iy where x and y are real numbers and i=1. The points (x, y) for which z1zi is real, lie on

(A) an ellipse          (B) a circle         (C) a parabola         (D) a straight line

Ans: (D)

 

47.  The equation 2x² + 5xy - 12y² = 0 represents a

(A) circle

(B) pair of non-perpendicular intersecting straight lines

(C) pair of perpendicular straight lines

(D) hyperbola

Ans: (B)

 

48.  The line y = x intersects the hyperbola x29y225=1 at the points P and Q. The eccentricity of ellipse with PQ as major axis and minor axis of length 52 is

(A) 53        (B) 53         (C) 59        (D)259

Ans: ()

 

49.  The equation of the circle passing through the point (1, 1) and the points of intersection of x² + y² - 6x - 8 = 0 and x² + y² - 6 = 0 is

(A) x² + y² + 3x - 5 = 0        (B) x² + y² - 4x + 2 = 0        (C) x² + y² + 6x - 4 = 0        (D) x² + y² - 4y -2 = 0

Ans: (A)

 

50.  Six positive numbers are in G.P., such that their product is 1000. If the fourth term is 1, then the last term is

(A) 1000        (B) 100        (C) 1/100         (D) 1/1000

Ans: (C)

 

51.  In the set of all 3 x 3 real matrices a relation is defined as follows. A matrix A is related to a matrix B if and only if there is a non-singular 3x3 matrix P such that B = P-1AP. This relation is

(A) Reflexive, Symmetric but not Transitive

(B) Reflexive, Transitive but not Symmetric

(C) Symmetric, Transitive but not Reflexive

(D) an Equivalence relation

Ans: (D)

 

52.  The number of lines which pass through the point (2, -3) and are at a distance 8 from the point (-1, 2) is

(A) infinite          (B) 4         (C) 2          (D) 0

Ans: (D)

 

53.  If α, β are the roots of the quadratic equation ax² + bx + c = 0 and 3b² = 16ac then

(A) α = 4β or ß = 4α         (B) α = -4β or β = -4α         (C) α = 3β or β = 3α        (D) α = -3β or β = -3α

Ans: (C)

 

54.  For any two real numbers a and b, we define a R b if and only if sin² a + cos² b = 1. The relation R is

(A) Reflexive but not Symmetric

(B) Symmetric but not Transitive

(C) Transitive but not Reflexive

(D) an Equivalence relation

Ans: (D)

 

55.   Let n be a positive even integer. The ratio of the largest coefficient and the 2nd largest coefficient in the expansion of (1+x)n is 11 : 10. Then the number of terms in the expansion of (1+x)n is

(A) 20       (B) 21       (C) 10       (D) 11

Ans: (B)

 

56.  Let exp (x) denote the exponential function e<sup>x</sup>. If f(x)=exp(x1x),x>0, then the minimum value of f in the interval [2, 5] is

(A) exp(e1e)        (B) exp(212)        (C) exp(515)        (D) exp(313)

Ans: (C)

 

57.  The sum of the series 11×225C0+12×325C1+13×425C2+...+126×2725C25

(A) 227126×27       (B) 2272826×27       (C) 12(226+126×27)       (D) 226152

Ans: (B)

 

58. Five numbers are in A.P. With common difference ≠ 0 . If the 1<sup>st</sup>, 3<sup>rd</sup> and 4<sup>th</sup> terms are in G.P., then

(A) the 5<sup>th</sup> term is always 0

(B) the 1<sup>st</sup> term is always 0

(C) the middle term is always 0

(D) the middle term is always -2

Ans: (A)

 

59.  The minimum value of the function f(x)=2|x1|+|x2| is

(A) 0       (B) 1        (C) 2       (D) 3

Ans: (B)

 

60.  If P, Q, R are angles of an isosceles triangle and P=π2, then the value of

(cosP3isinP3)3+(cosQ+isinQ)(cosRisinR)+(cosPisinP)(cosQisinQ)(cosRisinR)

is equal to

(A) i        (B) -i        (C) 1       (D) -1

Ans: (B)

 

61.  A line passing through the point of intersection of x+y=4 and xy=2 makes an angle tan1(3/4) with the x-axis. It intersects the parabola y2=4(x3) at points (x1,y1) and (x2,y2) respectively. Then |x1x2| is equal to

(A) 169         (B) 329         (C) 409         (D) 809

Ans: (B)

 

62.  Let [a] denote the greatest integer which is less than or equal to a. Then the value of the integral

π2π2[sinxcosx]dx is

(A) π2         (B) π         (C) π        (D) π2

Ans: (D)

 

63.  If P=(224134123) then P5 equals

(A) P         (B) 2P          (C) -P         (D) -2P

Ans: (A)

 

64.  If sin2θ+3cosθ=2, then cos3θ+sec3θ is

(A) 1         (B) 4         (C) 9         (D) 18

Ans: (D)

 

65.  x=1+12×|1_+14×|2_+18×|3_+...... and y=1+x2|1_+x4|2_+x6|3_+......

Then the value of logey is

(A) e         (B) e²          (C) 1         (D) 1/e

Ans: (A)

 

66.  The value of the infinite series

12+22|3_+12+22+32|4_+12+22+32+42|5_+....... is

(A) e         (B) 5e          (C) 5e612         (D) 5e6

Ans: (C)

 

67.  The value of the integral π3π6(sinxxcosx)x(x+sinx)dx is equal to

(A) loge(2(π+3)2π+33)         (B) loge(π+32(2π+33))        (C) loge(2π+332(π+3))         (D) loge(2(2π+33)π+3)

Ans: (A)

 

68.  Let f(x)=x(1x1+1x+1x+1),x>1. Then

(A) f(x)1          (B) 1<f(x)2         (C) 2<f(x)3         (D) f(x)>3

Ans: (D)

 

69.  Let F(x)=x0cost(1+t2)dt, 0x2π. Then

(A) F is increasing in (π2,3π2) and decreasing in (0,π2) and (3π2,2π)

(B) F is increasing in (0,π) and decreasing in (π,2π)

(C) F is increasing in (π,2π) and decreasing in (0,π)

(D) F is increasing in (0,π2) and (3π2,2π) and decreasing in (π2,3π2)

Ans: (D)

 

70.  Let f(x)=x2/3,x0. Then the area of the region enclosed by the curve y=f(x) and three lines y=x, x=1 and x=8 is

(A) 632         (B) 935         (C) 1057         (D) 12910

Ans: (D)

 

71.  Let P be a point on the parabola y² = 4ax with focus F.

Let Q denote the foot of the perpendicular from P onto the directrix. Then tanPQFtanPFQ is

(A) 1         (B) 1/2          (C)  2         (D) 1/4

Ans: (A)

 

72. An objective type test paper has 5 questions. Out of these 5 questions, 3 questions have four options each (A, B, C, D) with one option being the correct answer. The other 2 questions have two options each, namely True and False. A candidate randomly ticks the options. Then the probability that he/she will tick the correct option in at least four questions, is

(A) 532         (B) 3128         (C) 3256        (D) 364

Ans: (D)

 

73.  A family of curves is such that the length intercepted on the y-axis between the origin and the tangent at a point is three the ordinate of the point of contact. The family of curves is

(A) xy=c, c is a constant

(B) xy2=c, c is a constant

(C) x2y=c, c is a constant

(D) x2y2=c, c is a constant

Ans: (C)

 

74.  The solution of the differential equation (y2+2x)dydx=y satisfy x = 1, y = 1. Then the solution is

(A) x=y2(1+logey)        (B) y=x2(1+logex)         (C) x=y2(1logey)        (D) y=x2(1logex)

Ans: (A)

 

75.  The solution of the differential equation ysin(x/y)dx=(xsin(x/y)y)dy satisfying y(π/4)=1 is

(A) cosxy=logey+12

(B) sinxy=logey+12

(C) sinxy=logex12

(D) cosxy=logex12

Ans: ()

 

76. The area of the region encloses between parabola y² = x and the line y = mx is 148. Then the value of m is

(A) -2        (B) -1        (C) 1        (D) 2

Ans: (A)

 

77.  Consider the system of equations:

x+y+z=0

αx+βy+γz=0

α2x+β2y+γ2z=0

Then the system of equations has

(A) A unique solution for all values of α,β,γ

(B) Infinite numbers of solutions if any two of α,β,γ are equal

(C) A unique solution if α,β,γ are distinct

(D) More than one, but finite number of solutions depending on values of α,β,γ

Ans: (B)

 

78.  The equations of the circles which touch both the axis and the line 4x+3y=12 and have centres in the first quadrant, are

(A) x² + y² - x - y + 1 = 0

(B) x² + y² - 2x - 2y + 1 = 0

(C) x² + y² - 12x - 12y + 36 = 0

(D) x² + y² - 6x - 6y + 36 = 0

Ans: (B)

 

79.  Which of the following real valued functions is/are not even functions ?

(A) ƒ(x) = x³ sin x

(B) ƒ(x) = x² cos x

(C) ƒ(x) = exx³ sin x

(D) ƒ(x) = x-[x], where [x] denotes the greatest integer less than or equal to x

Ans: (C)

 

80.  Let sinα, cosα be the roots of the equation x2bx+c=0. Then which of the following statements is/are correct ?

(A) c12         (B) b2         (C) c>12         (D) b>2

Ans: (A)

****

 

Comments

Related Items

WBJEE Physics Question Paper 2013 (Beng)

Q. 1 – Q. 45 carry one mark each, for which only one option is correct. Any wrong answer will be lead to deduction of 1/3 mark.

WBJEE Mathematics Question Paper 2013 (Beng)

1.  a এবং b প্রত্যেকটির মান 1 এবং 2 হওয়ার সম্ভাবনা সমান । ax² + bx + 1 = 0 সমীকরণের বীজদ্বয় বাস্তব হওয়ার সম্ভাবনা হল

(A) 12      (B) 14      (C) 18      (D) 116

 

WBJEE Chemistry Question Paper 2013 (Beng)

1.  X যৌগটির IUPAC নামটি হল -

(A) 4-সায়ানো-4-মিথাইল-2-অক্সোপেন্টেন

(B) 2-সায়ানো-2-মিথাইল-4-অক্সোপেন্টেন

WBJEE Chemistry Question Paper 2013 (Eng)

Q. 1 – Q. 45 carry one mark each, for which only one option is correct. Any wrong answer will lead to deduction of 1/3 mark.

1.   In diborane, the number of electrons that account for bonding in the bridges is

WBJEE Physics Question Paper 2013 (Eng)

Q. 1 – Q. 45 carry one mark each, for which only one option is correct. Any wrong answer will be lead to deduction of 1/3 mark.