WBJEE - 2010 - Mathematics
1. The value of cotx−tanxcot2x is
(A) 1 (B) 2 (C) –1 (D) 4
Ans : (B)
2. The number of points of intersection of 2y = 1 and y = sin x, in −2π ≤ x ≤ 2π is
(A) 1 (B) 2 (C) 3 (D) 4
Ans : (D)
3. Let R be the set of real numbers and the mapping ƒ : R → R and g : R → R be defined by ƒ(x) = 5 – x² and g(x) = 3x – 4, then the value of (fog)(–1) is
(A) –44 (B) –54 (C) –32 (D) –64
Ans : (A)
4. A = {1, 2, 3, 4}, B = {1, 2, 3, 4, 5, 6} are two sets, and function ƒ : A → B is defined by ƒ(x) = x + 2∀x ∈A , then the function ƒ is
(A) bijective (B) onto (C) one–one (D) many–one
Ans : (C)
5. If the matrices A=[213410] and B=[1−10250], then AB will be
(A) [1704−2] (B) [4004] (C) [1740−2] (D) [0000]
Ans : (A)
6. ω is an imaginary cube root of unity and [x+ω2ω1ωω21+x1x+ωω2]=0 then one of the values of x is
(A) 1 (B) 0 (C) –1 (D) 2
Ans : (B)
7. If A=[12−4−1] then A–1 is
(A) 17[−1−241] (B) 17[12−4−1] (C) 17[−1−241] (D) Does not exist
Ans : Both (A) & (C)
8. The value of 23!+45!+67!+⋯⋯ is
(A) e12 (B) e−1 (C) e (D) e13
Ans : (B)
9. If sum of an infinite geometric series is 45 and its 1st term is 34, then its common ratio is
(A) 716 (B) 916 (C) 19 (D) 79
Ans : (A)
10. The number of permutations by taking all letters and keeping the vowels of the word COMBINE in the odd places is
(A) 96 (B) 144 (C) 512 (D) 576
Ans : (D)
11. If n−1C3+n−1C4>nC3, then n is just greater than integer
(A) 5 (B) 6 (C) 4 (D) 7
Ans : (D)
12. If in the expansion of (a−2b)n, the sum of the 5th and 6th term is zero, then the value of ab is
(A) n−45 (B) 2(n−4)5 (C) 5n−4 (D) 52(n−4)
Ans : (B)
13. (23n−1) will be divisible by ( ∀n ∈ N )
(A) 25 (B) 8 (C) 7 (D) 3
Ans : (C)
14. Sum of the last 30 coefficients in the expansion of (1+x)59 , when expanded in ascending powers of x is
(A) 259 (B) 258 (C) 230 (D) 229
Ans : (B)
15. If (1−x+x2)n=a0+a1x+⋯⋯+a2nx2n, then the value of a0+a2+a4+⋯⋯+a2n is
(A)3n+12 (B) 3n−12 (C) 3n−12 (D) 3n+12
Ans : (D)
16. If α, β be the roots of the quadratic equation x² + x + 1 = 0 then the equation whose roots are α19,β7 is
(A) x² - x + 1 = 0 (B) x² - x - 1 = 0 (C) x² + x - 1 = 0 (D) x² + x + 1 = 0
Ans : (D)
17. The roots of the quadratic equation x² - 2√3x - 22 = 0 are :
(A) imaginry (B) real, rational and equal (C) real, irrational and unequal (D) real, rational and unequal
Ans : (C)
18. The qudratic equation x2+15|x|+14>0 has
(A) only positive solutions (B) only negative solutions (C) no solution (D) both positive and negative solution
Ans : (C)
19. If z=41−i, then ¯z is (where ¯z is complexconjugate of z )
(A) 2(1+i) (B) (1+i) (C) 21−i (D) 41+i
Ans : (D)
20. If −π<arg(z)<π2 then arg¯z−arg(−¯z) is
(A) π (B) −π (C) π2 (D) −π2
Ans : (A)
21. Two dice are tossed once. The probability of getting an even number at the first die or a total of 8 is
(A) 136 (B) 336 (C) 1136 (D) 2036
Ans : (D)
22. The probability that at least one of A and B occurs is 0.6 . If A and B occur simultaneously with probability 0.3, then P(A′) + P(B′) is
(A) 0.9 (B) 0.15 (C) 1.1 (D) 1.2
Ans : (C)
23. The value of log35×log2527×log497log813 is
(A) 1 (B) 6 (C) 23 (D) 3
Ans : (D)
24. In a right-angled triangle, the sides are a, b and c, with c as hypotenuse, and c − b ≠ 1, c + b ≠ 1 . Then the value of (logc+ba+logc−ba)/(2logc+ba×logc−ba) will be
(A) 2 (B) –1 (C) 12 (D) 1
Ans : (D)
25. Sum of n terms of the following series 13+33+53+73+⋯⋯ is
(A) n2(2n2−1) (B) n3(n−1) (C) n3+8n+4 (D) 2n4+3n2
Ans : (A)
26. G.. M. and H. M. of two numbers are 10 and 8 respectively. The numbers are :
(A) 5, 20 (B) 4, 25 (C) 2, 50 (D) 1, 100
Ans : (A)
27. The value of n for which xn+1+yn+1xn+yn is the geometric mean of x and y is
(A) n=−12 (B) n=12 (C) n=1 (D) n=−1
Ans : (A)
28. If angles A, B and C are in A.P., then a+cb is equal to
(A) 2sinA−C2 (B) 2cosA−C2 (C) cosA−C2 (D) sinA−C2
Ans : (B)
29. If cosA3=cosB4=15,π2<A<0,−π2<B<0 then value of 2sinA+4sinB is
(A) 4 (B) –2 (C) –4 (D) 0
Ans : (C)
30. The value of cot54∘tan36∘+tan20∘cot70∘ is
(A) 0 (B) 2 (C) 3 (D) 1
Ans : (B)
31. If sin6θ+sin4θ+sin2θ=0 then the general value of θ is
(A) nπ4,nπ±π3 (B) nπ4,nπ±π6 (C) nπ4,2nπ±π3 (D) nπ4,2nπ±π6
Ans : (A)
32. In a Δ ABC, 2acsinA−B+C2 is equal to
(A) a2+b2−c2 (B) c2+a2−b2 (C) b2−a2−c2 (D) c2−a2−b2
Ans : (B)
33. Value of tan−1(sin2−1cos2) is
(A) π2−1 (B) 1−π4 (C) 2−π2 (D) π4−1
Ans : (D)
34. The straight line 3x + y = 9 divides the line segment joining the points (1,3) and (2,7) in the ratio
(A) 3 : 4 externally (B) 3 : 4 internally (C) 4 : 5 internally (D) 5 : 6 externally
Ans : (B)
35. If the sum of distances from a point P on two mutually perpendicular straight lines is 1 unit, then thelocus of P is
(A) a parabola (B) a circle (C) an ellipse (D) a straight line
Ans : (D)
36. The straight line x + y – 1 = 0 meets the circle x2+y2−6x−8y=0 at A and B. Then the equation of the circle of which AB is a diameter is
(A) x² + y² - 2y - 6 = 0 (B) x² + y² + 2y - 6 = 0 (C) 2(x² + y²) + 2y - 6 = 0 (D) 3(x² + y²) + 2y - 6 = 0
Ans : (A)
37. If t1 and t2 be the parameters of the end points of a focal chord for the parabola y² = 4ax, then which one is true ?
(A) t1t2=1 (B) t1t2=1 (C) t1t2=−1 (D) t1+t2=−1
Ans : (C)
38. S and T are the foci of an ellipse and B is end point of the minor axis. If STB is an equilateral triangle, the eccentricity of the ellipse is
(A) 14 (B) 13 (C) 12 (D) 23
Ans : (C)
39. For different values of α , the locus of the point of intersection of the two straight lines √3x−y−4√3α=0 and √3αx+αy−4√3=0 is
(A) a hyperbola with eccentricity 2
(B) an ellipse with eccentricity √23
(C) a hyperbola with eccentricity √1916
(D) an ellipse with eccentricity 34
Ans : (A)
40. The area of the region bounded by y² = x and y = |x| is
(A) 13 sq.unit (B) 16 sq.unit (C) 23 sq.unit (D) 1sq.unit
Ans : (B)
41. If the displacement, velocity and acceleration of a particle at time, t be x, v and f respectively, then which one is true ?
(A) f=v3d2tdx2 (B) f=−v3d2tdx2 (C) f=v2d2tdx2 (D) f=−v2d2tdx2
Ans : (B)
42. The displacement x of a particle at time t is given by x = At² + Bt + C where A, B, C are constants and vis velocity of a particle, then the value of 4Ax – v² is
(A) 4AC + B² (B) 4AC – B² (C) 2AC – B² (D) 2AC + B²
Ans : (B)
43. For what values of x, the function f(x)=x4−4x3+4x2+40 is monotone decreasing ?
(A) 0 < x < 1 (B) 1 < x < 2 (C) 2 < x < 3 (D) 4 < x < 5
Ans : (B)
44. The displacement of a particle at time t is x, where x=t4−kt3 . If the velocity of the particle at time t = 2 is minimum, then
(A) k = 4 (B) k = – 4 (C) k = 8 (D) k = – 8
Ans : (A)
45. The point in the interval [0,2π], where ƒ(x) = ex sin x has maximum slope, is
(A) π4 (B) π2 (C) π (D) 3π2
Ans : (B)
46. The minimum value of f(x)=e(x4−x3+x2) is
(A) e (B) – e (C) 1 (D) –1
Ans : (C)
47. ∫log√x3xdx is equal to
(A) 13(log√x)2+C (B) 23(log√x)2+C (C) 23(logx)2+C (D) 13(logx)2+C
Ans : (A)
48. ∫ex(2x−2x2)dx is equal to
(A) exx+C (B) ex2x2+C (C) 2exx+C (D) 2exx2+C
Ans : (C)
49. The value of the integral ∫dx(ex+e−x)2 is
(A) 12(e2x+1)+C (B) 12(e−2x+1)+C (C) −12(e2x+1)−1+C (D) 14(e2x−1)+C
Ans : (C)
50. The value of {Lt}\limits_{x \to 0} {{{{\sin }^2}x + \cos x - 1} \over {{x^2}}} is
(A) 1 (B) 12 (C) −12 (D) 0
Ans : (B)
51. The value of {Lt}\limits_{x \to 0} {\left( {{{1 + 5{x^2}} \over {1 + 3{x^2}}}} \right)^{{1 \over {{x^2}}}}} is
(A) e2 (B) e (C) 1e (D) 1e2
Ans : (A)
52. In which of the following functions, Rolle’s theorem is applicable ?
(A) ƒ(x) =|x| in − 2 ≤ x ≤ 2 (B) ƒ(x) = tan x in 0 ≤ x ≤ π
(C) f(x)=1+(x−2)23 in 1 ≤ x ≤ 3 (D) ƒ(x) = x (x − 2)² in 0 ≤ x ≤ 2
Ans : (D)
53. If ƒ(5) = 7 and ƒ′(5) = 7 then {Lt}\limits_{x \to 5} {{xf(5) - 5f(x)} \over {x - 5}} is given by
(A) 35 (B) – 35 (C) 28 (D) – 28
Ans : (D)
54. If y=(1+x)(1+x2)(1+x4)⋯(1+x2n) then the value of (dydx)x=0 is
(A) 0 (B) –1 (C) 1 (D) 2
Ans : (C)
55. The value of ƒ(0) so that the function f(x)=1−cos(1−cosx)x4 is continuous everywhere is
(A) 12 (B) 14 (C) 16 (D) 18
Ans : (D)
56. ∫√1+cosxdx is equal to
(A) 2√2cosx2+C (B) 2√2sinx2+C (C) √2cosx2+C (D) √2sinx2+C
Ans : (B)
57. The function f(x)=sec[log(x+√1+x2)] is
(A) odd (B) even (C) neither odd nor even (D) constant
Ans : (B)
58. {\lim }\limits_{x \to 0} {{\sin \left| x \right|} \over x} is equal to
(A) 1 (B) 0 (C) positive infinity (D) does not exist
Ans : (D)
59. The co-ordinates of the point on the curve y=x2−3x+2 where the tangent is perpendicular to the straight line y = x are
(A) (0, 2) (B) (1, 0) (C) (–1, 6) (D) (2, –2)
Ans : (B)
60. The domain of the function f(x)=√cos−1(1−|x|2) is
(A) (–3, 3) (B) [–3, –3] (C) (−∞,−3)U(3,∞) (D) (−∞,−3]U[3,∞)
Ans : (B)
61. If the line ax + by + c = 0 is a tangent to the curve xy = 4, then
(A) a < 0, b > 0 (B) a ≤ 0, b > 0 (C) a < 0, b < 0 (D) a ≤ 0, b < 0
Ans : (C)
62. If the normal to the curve y = ƒ(x) at the point (3, 4) make an angle 3π/4 with the positive x-axis, then ƒ′(3) is
(A) 1 (B) – 1 (C) −34 (D) 34
Ans : (A)
63. The general solution of the different equation 100d2ydx2−20dydx+y=0 is
(A) y=(c1+c2x)ex (B) y=(c1+c2x)e−x (C) y=(c1+c2x)ex10 (D) y=c1ex+c2e−x
Ans : (C)
64. If y′′ – 3y′ + 2y = 0 where y(0) = 1, y′(0) = 0, then the value of y at x = loge2 is
(A) 1 (B) –1 (C) 2 (D) 0
Ans : (D)
65. The degree of the differential equation x=1+(dydx)+12!(dydx)2+13!(dydx)3+⋯⋯
(A) 3 (B) 2 (C) 1 (D) not defined
Ans : (C)
66. The equation of one of the curves whose slope at any point is equal to y + 2x is
(A) y = 2(ex + x −1) (B) y = 2(ex − x −1) (C) y = 2(ex − x +1) (D)y = 2(ex + x +1)
Ans : (B)
67. Solution of the differential equation xdy – ydx = 0 represents a
(A) parabola (B) circle (C) hyperbola (D) straight line
Ans : (D)
68. The value of the integral π/2∫0sin5xdx is
(A) 415 (B) 85 (C) 815 (D) 45
Ans : (C)
69. If ddx{f(x)}=g(x), then b∫af(x)g(x)dx is equal to
(A) 12[f2(b)−f2(a)] (B) 12[g2(b)−g2(a)] (C) f(b)−f(a) (D) 12[g(b2)−g(a2)]
Ans : (A)
70. If I1=3π∫0f(cos2x)dx and I2=π∫0f(cos2x)dx then
(A) I1=I2 (B) 3I1=I2 (C) I1=3I2 (D) I1=5I2
Ans : (C)
71. The value of I=π/2∫−π/2|sinx|dx is
(A) 0 (B) 2 (C) – 2 (D) – 2 < I < 2
Ans : (B)
72. If I=I∫0dx1+xπ/2, then
(A) loge2<1<π/4 (B) loge2>1 (C) I=π/4 (D) I=loge2
Ans : (A)
73. The area enclosed by y = 3x – 5, y = 0, x = 3 and x = 5 is
(A) 12 sq. units (B) 13 sq. units (C) 1312 sq. units (D) 14 sq. units
Ans : (D)
74. The area bounded by the parabolas y = 4x², y=x29 and the line y = 2 is
(A) 5√23 sq. units (B) 10√23 sq. units (C) 15√23 sq. units (D) 20√23 sq. units
Ans : (B)
75. The equation of normal of x² + y² – 2x + 4y – 5 = 0 at (2, 1) is
(A) y = 3x – 5 (B) 2y = 3x – 4 (C) y = 3x + 4 (D) y = x + 1
Ans : (A)
76. If the three points (3q, 0), (0, 3p) and (1, 1) are collinear then which one is true ?
(A) 1p+1q=1 (B) 1p+1q=2 (C) 1p+1q=3 (D) 1p+3q=1
Ans : (C)
77. The equations y=±√3x, y = 1 are the sides of
(A) an equilateral triangle (B) a right angled triangle (C) an isosceles triangle (D) an obtuse angled triangle
Ans : (A)
78. The equations of the lines through (1, 1) and making angles of 45° with the line x + y = 0 are
(A) x – 1 = 0, x – y = 0 (B) x – y = 0, y – 1 = 0 (C) x + y – 2 = 0, y – 1 = 0 (D) x – 1 = 0, y – 1 = 0
Ans : (D)
79. In a triangle PQR, ∠R=π/2 . If tan (p2) and tan (Q2) are roots of ax² + bx + c = 0, where a ≠ 0, then which one is true ?
(A) c = a + b (B) a = b + c (C) b = a + c (D) b = c
Ans : (A)
80. The value of sin55∘−cos55∘sin10∘ is
(A) 1√2 (B) 2 (C) 1 (D) √2
Ans : (D)
***