WBJEE - 2011 - Mathematics
1. The eccentricity of the hyperbola 4x2−9y2=36 is
(A) √113 (B) √153 (C) √133 (D) √143
Ans : (C)
2. The length of the latus rectum of the ellipse 16x2+25y2=400 is
(A) 5/16 unit (B) 32/5 unit (C) 16/5 unit (D) 5/32 unit
Ans : (B)
3. The vertex of the parabola y<sup>2</sup> + 6x - 2y + 13 = 0 is
(A) (1, - 1) (B) (-2, 1) (C) (32,1) (D) (−72,1)
Ans : (B)
4. The coordinates of a moving point p are (2t2+4,4t+6). Then its locus will be a
(A) circle (B) straight line (C) parabola (D) ellipse
Ans : (C)
5. The equation 8x<sup>2</sup> + 12y<sup>2</sup> - 4x + 4y - 1 = 0 represents
(A) an ellipse (B) a hyperbola (C) a parabola (D) a circle
Ans : (A)
6. If the straight line y = mx lies outside of the circle x<sup>2</sup> + y<sup>2</sup> - 20y + 90 = 0, then the value of m will satisfy
(A) m < 3 (B) |m| < 3 (C) m > 3 (D) |m| > 3
Ans : (B)
7. The locus of the centre of a circle which passes through two variable points (a, 0), (–a, 0) is
(A) x = 1 (B) x + y = a (C) x + y = 2a (D) x = 0
Ans : (D)
8. The coordinates of the two points lying on x + y = 4 and at a unit distance from the straight line 4x + 3y = 10 are
(A) (–3, 1), (7, 11) (B) (3, 1), (–7, 11) (C) (3, 1), (7, 11) (D) (5, 3), (–1, 2)
Ans : (B)
9. The intercept on the line y = x by the circle x2+y2−2x=0 is AB. Equation of the circle with AB as diameter is
(A) x2+y2=1 (B) x(x−1)+y(y−1)=0
(C) x2+y2=2 (D) (x−1)(x−2)+(y−1)+(y−2)=0
Ans : (B)
10. If the coordinates of one end of a diameter of the circle x<sup>2</sup> + y<sup>2</sup> + 4x - 8y + 5 = 0, is (2,1), the coordinates of the other end is
(A) (–6, –7) (B) (6, 7) (C) (–6, 7) (D) (7, –6)
Ans : (C)
11. If the three points A(1,6), B(3, –4) and C(x, y) are collinear then the equation satisfying by x and y is
(A) 5x+y−11=0 (B) 5x+13y+5=0 (C) 5x−13y+5=0 (D) 13x−5y+5=0
Ans : (A)
12. If sinθ=2t1+t2 and θ lies in the second quadrant, then cosθ is equal to
(A) 1−t21+t2 (B) t2−11+t2 (C) −|1−t2|1+t2 (D) 1+t2|1−t2|
Ans : (C)
13. The solutions set of inequation cos<sup>–1</sup>x < sin<sup>–1</sup>x is
(A) [−1,1] (B) [1√2,1] (C) [0,1] (D) (1√2,1]
Ans : (D)
14. The number of solutions of 2sin x + cos x = 3 is
(A) 1 (B) 2 (C) infinite (D) No solution
Ans : (D)
15. Let tanα=aa+1 and tanβ=12a+1 then α+β is
(A) π4 (B) π3 (C) π2 (D) π
Ans : (A)
16. If θ+ϕ=π4, then (1+tanθ)(1+tanϕ) is equal to
(A) 1 (B) 2 (C) 5/2 (D) 1/3
Ans : (B)
17. If sinθ and cosθ are the roots of the equation ax2−bx+c=0, then a, b and c satisfy the relation
(A) a2+b2+2ac=0 (B) a2−b2+2ac=0
(C) a2+c2+2ab=0 (D) a2−b2−2ac=0
Ans : (B)
18. If A and B are two matrices such that A + B and AB are both defined, then
(A) A and B can be any matrices (B) A, B are square matrices not necessarily of the same order
(C) A, B are square matrices of the same order (D) Number of columns of A = number of rows of B
Ans : (C)
19. If A=(3x−12x+3x+2) is a symmetric matrix, then the value of x is
(A) 4 (B) 3 (C) –4 (D) –3
Ans : (C)
20. If Z=(11+2i−5i1−2i−35+3i5i5−3i7) then (i=√−1)
(A) z is purely real (B) z is purely imaginary (C) z+ˉz=0 (D) (z−ˉz)i is purely imaginary
Ans : (A)
21. The equation of the locus of the point of intersection of the straight lines xsinθ+(1−cosθ)y=asinθ and xsinθ−(1+cosθ)y+asinθ=0 is
(A) y=±ax (B) x=±ay (C) y2=4x (D) x2+y2=a2
Ans : (D)
22. If sinθ+cosθ=0 and 0<θ<π, then θ
(A) 0 (B) π4 (C) π2 (D) 3π4
Ans : (D)
23. The value of cos 15° – sin 15° is
(A) 0 (B) 1√2 (C) −1√2 (D) 12√2
Ans : (B)
24. The period of the function ƒ(x)= cos 4x + tan 3x is
(A)π (B)π2 (C) π3 (D) π4
Ans : (A)
25. If y=2x3−2x2+3x−5, then for x = 2 and △x=0.1 value of is △y is
(A) 2.002 (B) 1.9 (C) 0 (D) 0.9
Ans : (B)
26. The approximate value of 5√33 correct to 4 decimal places is
(A) 2.0000 (B) 2.1001 (C) 2.0125 (D) 2.0500
Ans : (C)
27. The value of 2∫−2(xcosx+sinx+1)dx is
(A) 2 (B) 0 (C) – 2 (D) 4
Ans : (D)
28. For the function f(x)=ecosx, Rolle’s theorem is
(A) applicable when π2≤x≤3π2 (B) applicable when 0≤x≤π2
(C) applicable when 0≤x≤π (D) applicable when π4≤x≤π2
Ans : (A)
29. The general solution of the differential equation d2ydx2+8dydx+16y=0 is
(A) (A+Bx)e5x (B) (A+Bx)e4x (C) (A+Bx2)e4x (D) (A+Bx4)e4x
Ans : (B)
30. If x2+y2=4, then ydydx+x=
(A) 4 (B) 0 (C) 1 (D) -1
Ans : (B)
31. ∫x3dy1+x8=
(A) 4tan−1x3+c (B) 12tan−1x4+c
(C) x+4tan−1x4+c (D) x2+14tan−1x4+c
Ans : (B)
32. 16π∫π|sinx|dx=
(A) 0 (B) 32 (C) 30 (D) 28
Ans : (C)
33. The degree and order of the differential equation y=x(dydx)2+(dxdy)2 are respectively
(A) 1, 1 (B) 2, 1 (C) 4, 1 (D) 1, 4
Ans: (C)
34. f(x)={0x−3,,x=0x>0 The function ƒ(x) is
(A) increasing when x ≥ 0 (B) strictly increasing when x > 0
(C) Strictly increasing at x = 0 (D) not continuous at x = 0 and so it is not increasing when x > 0
Ans :(B)
35. The function ƒ(x) = ax + b is strictly increasing for all real x if
(A) a > 0 (B) a < 0 (C) a = 0 (D) a ≤ 0
Ans : (A)
36. ∫cos2xcosxdx=
(A) 2 sin x + log | sec x + tan x | + C (B) 2 sin x – log |sec x – tan x| + c
(C) 2 sin x – log |sec x + tan x| + C (D) 2 sin x + log |sec x – tan x| + C
Ans: (C)
37. ∫sin8x−cos8x1−2sin2xcos2xdx
(A) −12sin2x+C (B) 12sin2x+C (C) 12sinx+C (D) −12sinx+C
Ans : (A)
38. The general solution of the differential equation loge(dydx)=x+y is
(A) e<sup>x</sup> + e<sup>–y</sup> = C (B) e<sup>x</sup> + e<sup>y</sup> = C (C) e<sup>y</sup> + e<sup>-x</sup> = C (D) e<sup>-x</sup> + e<sup>-y</sup> = C
Ans : (A)
39. If y=Ax+Bx2, then x2d2ydx2=
(A) 2y (B) y<sup>2</sup> (C) y<sup>3</sup> (D) y<sup>4</sup>
Ans: (A)
40. If one of the cube roots of 1 be ω, then |11+ω2ω21−i−1ω2−1−i−1+ω−1| =
(A) ω (B) i (C) 1 (D) 0
Ans: (D)
41. 4 boys and 2 girls occupy seats in a row at random. Then the probability that the two girls occupy seats side by side is
(A) 12 (B) 14 (C) 13 (D) 16
Ans : (C)
42. A coin is tossed again and again. If tail appears on first three tosses, then the chance that head appears on fourth toss is
(A) 116 (B) 12 (C) 18 (D) 14
Ans : (B)
43. The coefficient of X<sup>n</sup> in the expansion of e7x+exe3x is
(A) {{{4^{n - 1}} - {{( - 2)}^{n - 1}}} \over {\left| {n\limits_ - }} (B) {{{4^{n - 1}} - {2^{n - 1}}} \over {\left|{n\limits_-}} (C) {{{4^n} - {2^n}}\over {\left|{ n\limits_ - }} (D){{{4^n}+{{(-2)}^n}}\over {\left| {n\limits_ - }}
Ans :(D)
44. The sum of the series 11.2−12.3+13.4−⋯⋯∞ is
(A) 2loge2+1 (B) 2loge2 (C) 2loge2−1 (D) loge2−1
Ans : (C)
45. The number (101)100 – 1 is divisible by
(A) 104 (B) 106 (C) 108 (D) 1012
Ans : (A)
46. If A and B are coefficients of x<sup>n</sup> in the expansions of (1+ x)<sup>2n</sup> and (1+x)<sup>2n – 1</sup> respectively, then A/B is equal to
(A) 4 (B) 2 (C) 9 (D) 6
Ans : (B)
47. If n > 1 is an integer and x≠0, then (1 + x)<sup>n</sup> – nx – 1 is divisible by
(A) nx<sup>3</sup> (B) n<sup>3</sup>x (C) x (D) nx
Ans : (C)
48. If <sup>n</sup>C<sub>4</sub>, <sup>n</sup>C<sub>5</sub> and <sup>n</sup>C<sub>6</sub> are in A.P., then n is
(A) 7 or 14 (B) 7 (C) 14 (D) 14 or 21
Ans : (A)
49. The number of diagonals in a polygon is 20. The number of sides of the polygon is
(A) 5 (B) 6 (C) 8 (D) 10
Ans : (C)
50. <sup>15</sup>C<sub>3</sub> + <sup>15</sup>C<sub>5</sub> + ......... + <sup>15</sup>C<sub>15</sub> =
(A) 2<sup>14</sup> (B) 2<sup>14</sup> – 15 (C) 2<sup>14</sup> + 15 (D) 2<sup>14</sup> – 1
Ans : (B)
51. Let a, b, c be three real numbers such that a + 2b + 4c = 0. Then the equation ax<sup>2</sup> + bx + c = 0
(A) has both the roots complex (B) has its roots lying within – 1 < x < 0
(C) has one of roots equal to ½ (D) has its roots lying within 2 < x < 6
Ans : (C)
52. If the ratio of the roots of the equation px<sup>2</sup> + qx + r = 0 is a : b, then ab(a+b)2=
(A) p2qr (B) prq2 (C) p2pr (D) pqr2
Ans : (B)
53. If α and ß are the roots of the equation x<sup>2</sup> + x + 1 = 0, then the equation whose roots are α<sup>19</sup> and ß<sup>7</sup> is
(A) x<sup>2</sup> – x – 1 = 0 (B) x<sup>2</sup> – x + 1 = 0 (C) x<sup>2</sup> + x – 1= 0 (D) x<sup>2</sup> + x + 1 = 0
Ans : (D)
54. For the real parameter t, the locus of the complex number z=(1+t2)+i√1+t2 in the complex plane is
(A) an ellipse (B) a parabola (C) a circle (D) a hyperbola
Ans : (B)
55. If x+1x=2cosθ, then for any integer n, xn+1xn=
(A) 2cosnθ (B) 2sinnθ (C) 2icosnθ (D) 2isinnθ
Ans : (A)
56. If ω≠1 is a cube root of unity, then the sum of the series S=1+2ω+3ω2+⋯⋯+3nω3n−1 is
(A) 3nω−1 (B) 3n(ω−1) (C) ω−13n (D) 0
Ans : (A)
57. If log3x+log3y=2+log32 and log3(x+y)=2, then
(A) x = 1, y = 8 (B) x = 8, y = 1 (C) x = 3, y = 6 (D) x = 9, y = 3
Ans : (C)
58. If log72=λ then value of log49(28) is
(A) (2λ+1) (B) (2λ+3) (C) 12(2λ+1) (D) 2(2λ+1)
Ans : (C)
59. The sequence loga,loga2b,loga3b2,⋯⋯ is
(A) a G.P. (B) an A.P. (C) a H.P. (D) both a G.P. and a H.P
Ans : (B)
60. If in a triangle ABC, sin A, sin B, sin C are in A.P., then
(A) the altitudes are in A.P. (B) the altitudes are in H.P.
(C) the angles are in A.P. (D) the angles are in H.P.
Ans : (B)
61. |a−bb−cc−ab−cc−aa−bc−aa−bb−c|=
(A) 0 (B) – 1 (C) 1 (D) 2
Ans : (A)
62. The area enclosed between y<sup>2</sup> = x and y = x is
(A) 23 sq. units (B) 12 units (C) 13 units (D) 16 units
Ans: (D)
63. Let f(x)=x3e−3x,x>0. Then the maximum value of ƒ(x) is
(A) e<sup>-3</sup> (B) 3e<sup>-3</sup> (C) 27e<sup>-9</sup> (D) ∞
Ans : (A)
64. The area bounded by y<sup>2</sup> = 4x and x<sup>2</sup> = 4y is
(A) 203 sq. unit (B) 163 sq. unit (C) 143 sq. unit (D)103 sq. unit
Ans: (B)
65. The acceleration of a particle starting from rest moving in a straight line with uniform acceleration is 8m/sec2. The time taken by the particle to move the second metre is
(A) √2−12 sec (B) √2+12 sec (C) (1+√2) sec (D) (√2−1) sec
Ans : (A)
66. The solution of dydx=yx+tanyx is
(A) x = c sin(y/x) (B) x = c sin(xy) (C) y = c sin(y/x) (D) xy = c sin (x/y)
Ans : (A)
67. Integrating Factor (I.F.) of the defferential equation dydx−3x2y1+x3=sin2(x)1+x is
(A) e1+x3 (B) log(1+x3) (C) 1+x3 (D) 11+x3
Ans : (D)
68. The differential equation of y = ae<sup>bx</sup> (a & b are parameters) is
(A) yy1=y22 (B) yy2=y21 (C) yy21=y2 (D) yy22=y1
Ans : (B)
69. The value of limn→∞n∑r=1r3r4+n4 is
(A) 12loge(1/2) (B) 14loge(1/2) (C)14loge2 (D) 12loge2
Ans: (C)
70. The value of π∫0sin50xcos49xdx is
(A) 0 (B) π4 (C) π2 (D) 1
Ans: (A)
71. ∫2x(f′(x)+f(x)log2)dx is
(A) 2xf′(x)+C (B) 2xf(x)+C (C) 2x(log2)f(x)+C (D) (log2)f(x)+C
Ans:(B)
72. Let f(x)=tan−1x. Then f′(x)+f″(x) is =0, when x is equal to
(A) 0 (B) +1 (C) i (D) -i
Ans: (B)
73. If y=tan−1√1+x2−1x, then y'(1)=
(A) 1/4 (B) 1/2 (C) -1/4 (D) -1/2
Ans : (A)
74. The value of limx→1x+x2+⋯+xn−nx−1 is
(A) n (B) n+12 (C)n(n+1)2 (D)n(n−1)2
Ans: (C)
75. limx→0sin(πsin2x)x2 =
(A) π2 (B) 3π (C) 2π (D) π
Ans: (D)
76. If the function f(x)={x2−(A+2)x+Ax−22forx≠2forx=2 is continuous at x = 2, then
(A) A = 0 (B) A = 1 (C) A = – 1 (D) A = 2
Ans : (A)
77. f(x)={[x]+[−x],λwhenx≠2whenx=2
If ƒ(x) is continuous at x = 2, the value of λ will be
(A) – 1 (B) 1 (C) 0 (D) 2
Ans : (A)
78. The even function of the following is
(A) f(x)=ax+a−xax−a−x (B) f(x)=ax+1ax−1
(C) f(x)=x.ax−1ax+1 (D) f(x)=log2(x+√x2+1)
Ans : (C)
79. If ƒ(x + 2y, x – 2y) = xy, then ƒ(x, y) is equal to
(A) 14xy (B) 14(x2−y2) (C) 18(x2−y2) (D) 12(x2+y2)
Ans: (C)
80. The locus of the middle points of all chords of the parabola y<sup>2</sup> = 4ax passing through the vertex is
(A) a straight line (B) an ellipse (C) a parabola (D) a circle
Ans : (C)
***