লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয়

Submitted by arpita pramanik on Mon, 08/31/2020 - 21:17

লেখচিত্রের সাহায্যে মূলবিন্দু থেকে যেকোনো বিন্দুর দূরত্ব নির্ণয় 

মনে করি XOX' ও YOY' সরলরেখাদ্বয় লম্বভাবে পরস্পরকে O বিন্দুতে ছেদ করেছে। XOX' ও YOY' এইদুটি স্থানাঙ্ক রেখা বা Co-Ordinate axes এবং O হল মূলবিন্দু ( Origin ) ।

disএই সমতলে কোনো একটি বিন্দু P এর স্থানাঙ্ক ধরা হল (x,y) . তাহলে মূলবিন্দু O(0,0) থেকে P(x,y) বিন্দুর দূরত্ব আমাদের নির্ণয় করতে হবে। 

এখন P বিন্দু থেকে OX এর উপর PN লম্ব টানা হল এবং OP যুক্ত করা হল। 

অতএব ON = x এবং PN = y .এখন OPN সমকোণী ত্রিভুজ। অতএব পিথাগোরাসের উপপাদ্য অনুযায়ী 

[tex]\begin{array}{l}
O{P^2}\\
 = O{N^2} + P{N^2}\\
 = {x^2} + {y^2}
\end{array}[/tex]

অতএব [tex]OP = \sqrt {{x^2} + {y^2}} [/tex] একক 

অতএব মূলবিন্দু O(0,0) থেকে P(x,y) বিন্দুর দূরত্ব হল [tex]\sqrt {{x^2} + {y^2}} [/tex] 

যেহেতু দুটি বিন্দুর মধ্যে দূরত্ব কখনো ঋণাত্মক হয়না সেইকারণে আমরা কেবল ধনাত্মক মানই ধরব। 

Comments

Related Items

বহুপদী সংখ্যামালা (Polynomials)

বহুপদী সংখ্যামালা সম্পর্কে জানতে হলে আমাদের তার আগে কয়েকটি বিষয় সম্পর্কে জানতে হবে। পদ ( term ) এবং রাশি ( Expression ), বিভিন্ন প্রকার রাশিমালা (Different types of Expression)

বৃত্ত সংক্রান্ত অংকের সমাধান

বৃত্ত সংক্রান্ত অংকের সমাধান

বৃত্ত, বৃত্তের পরিধি ও ক্ষেত্রফল

বৃত্তের সূত্রাবলি, যদি দুটি এক কেন্দ্রীয় বৃত্তের ব্যাসার্ধ যথাক্রমে R ও r ; (R > r)একক হয়, তবে তাদের পরিধি দুটি দ্বারা সীমাবদ্ধ বৃত্তবলয়ের ক্ষেত্রফল

আয়তক্ষেত্র, বর্গক্ষেত্র ও ত্রিভূজ

আয়তক্ষেত্র,বর্গক্ষেত্র ও ত্রিভূজ

সমবিন্দু সংক্রান্ত উপপাদ্য

সমবিন্দু সরলরেখা, ত্রিভুজের বাহুগুলির লম্বসমদ্বিখণ্ডকদ্বয় সমবিন্দু , ত্রিভুজের শীর্ষবিন্দু থেকে বিপরীত বাহুগুলির উপর অঙ্কিত লম্ব তিনটি সমবিন্দু , ত্রিভুজের কোণগুলির অন্তর্সমদ্বিখণ্ডক তিনটি সমবিন্দু। প্রমাণ করতে হবে একটি ত্রিভুজের দুটি কোণের বহিঃসমদ্বিখণ্ডক ...