Time Response of Second-order Systems

Submitted by Anonymous (not verified) on Tue, 07/05/2011 - 17:45

C(s)R(s)=G(s)1+G(s)

G(s)=ω2ns(s+2ζωn)

C(s)R(s)=(ω2ns(s+2ζωn))1+(ω2ns(s+2ζωn))=ω2ns2+2ζωns+ω2n


s2+2ζωns+ω2n=0


s=2ωζn±(2ζωn)24ω2n2=2(ζωn±ωnζ21)2

s=ζωn±ωnζ21


C(s)=(ω2ns2+2ζωns+ω2n)R(s)

R(s)=1s


C(s)R(s)=ω2ns2+2ζωns+ω2n


C(s)R(s)=ω2ns2+ω2n

C(s)=(ω2ns2+ω2n)R(s)

R(s)=1s

C(s)=(ω2ns2+ω2n)(1s)=ω2ns(s2+ω2n)


c(t)=(1cos(ωnt))u(t)


/delta=1


C(s)R(s)=ω2ns2+2ωns+ω2n

C(s)=(ω2n(s+ωn)2)R(s)

C(s)=(ω2n(s+ωn)2)(1s)=ω2ns(s+ωn)2


C(s)=ω2ns(s+ωn)2=As+Bs+ωn+C(s+ωn)2

C(s)=1s1s+ωnωn(s+ωn)2


c(t)=(1eωntωnteωnt)u(t)


s2+2ζωns+ω2n={s2+2(s)(ζωn)+(ζωn)2}+ω2n(ζωn)2

=(s+ζωn)2+ω2n(1ζ2)

C(s)R(s)=ω2n(s+ζωn)2+ω2n(1ζ2)

C(s)=(ω2n(s+ζωn)2+ω2n(1ζ2))R(s)

C(s)=(ω2n(s+ζωn)2+ω2n(1ζ2))(1s)=ω2ns((s+ζωn)2+ω2n(1ζ2))

C(s)=ω2ns((s+ζωn)2+ω2n(1ζ2))=As+Bs+C(s+ζωn)2+ω2n(1ζ2)

C(s)=1ss+2ζωn(s+ζωn)2+ω2n(1ζ2)

C(s)=1ss+ζωn(s+ζωn)2+ω2n(1ζ2)ζωn(s+ζωn)2+ω2n(1ζ2)

C(s)=1s(s+ζωn)(s+ζωn)2+(ωn1ζ2)2ζ1ζ2(ωn1ζ2(s+ζωn)2+(ωn1ζ2)2)

C(s)=1s(s+ζωn)(s+ζωn)2+ω2dζ1ζ2(ωd(s+ζωn)2+ω2d)


c(t)=(1eζωntcos(ωdt)ζ1ζ2eζωntsin(ωdt))u(t)

c(t)=(1eζωnt1ζ2((1ζ2)cos(ωdt)+ζsin(ωdt)))u(t)

1ζ2=sin(θ)

c(t)=(1eζωnt1ζ2(sin(θ)cos(ωdt)+cos(θ)sin(ωdt)))u(t)

c(t)=(1(eζωnt1ζ2)sin(ωdt+θ))u(t)

s2+2ζωns+ω2n={s2+2(s)(ζωn)+(ζωn)2}+ω2n(ζωn)2

=(s+ζωn)2ω2n(ζ21)

C(s)R(s)=ω2n(s+ζωn)2ω2n(ζ21)

C(s)=(ω2n(s+ζωn)2ω2n(ζ21))R(s)

C(s)=(ω2n(s+ζωn)2(ωnζ21)2)(1s)=ω2ns(s+ζωn+ωnζ21)(s+ζωnωnζ21)

C(s)=ω2ns(s+ζωn+ωnζ21)(s+ζωnωnζ21)

=As+Bs+ζωn+ωnζ21+Cs+ζωnωnζ21

12(ζ+ζ21)(ζ21) and 12(ζζ21)(ζ21) C(s).

C(s)=1s+12(ζ+ζ21)(ζ21)(1s+ζωn+ωnζ21)(12(ζζ21)(ζ21))(1s+ζωnωnζ21)

c(t)=(1+(12(ζ+ζ21)(ζ21))e(ζωn+ωnζ21)t(12(ζζ21)(ζ21))e(ζωnωnζ21)t)u(t)