সরল সুদকষা (Simple Interest)

Submitted by arpita pramanik on Wed, 06/01/2011 - 11:37

সরল সুদকষা (Simple Interest) :

(I) আসল বা মূলধন (Principal) : যত টাকা ধার নেওয়া বা দেওয়া অথবা যত টাকা গচ্ছিত রাখা হয় ।

(II) সময় ( Time ): যত সময়ের জন্য ধার নেওয়া বা দেওয়া অথবা যত টাকা গচ্ছিত রাখা হয় ।

(III) সুদ (Interest) : যে ব্যক্তি বা সংগঠন টাকা ধার দেন তাকে উত্তমর্ণ (Creditor) এবং যে ব্যক্তি বা সংগঠন টাকা ধার করেন তাকে অধমর্ণ (Debtor)বলা হয় । উত্তমর্ণের অর্থ সাময়িক ব্যবহার করার অধিকারের বদলে শর্ত অনুযায়ী অধমর্ণ কিছু অতিরিক্ত অর্থমূল্য তাকে দিয়ে থাকেন । এই অর্থমূল্যই সুদ (Interest) ।

(IV) সুদের হার (Rate of Interest) : সুদ সাধারণত বছরের হিসাবে কষা হয়ে থাকে, যেমন সুদের বার্ষিক হার 10% এর অর্থ হল, 100 টাকার 1 বছরের সুদ 10 টাকা । কোনো কোনো ক্ষেত্রে ষান্মাসিক, মাসিক, এমনকি দৈনিক হিসাবেও সুদ কষা হয় ।

(V) মোট সুদ (Total Interest) : নির্দিষ্ট আসলের উপর নির্দিষ্ট সময়ের জন্য দেও বা প্রাপ্য সুদ ।

(VI) সুদ-আসল বা সবৃদ্ধিমূল (Amount) : আসল + মোট সুদ (Principal + total Interest)

(VII) অধমর্ণ (Debtor) :  কোনো ব্যক্তি যদি ব্যাঙ্ক বা সমবায় সমিতি থেকে টাকা ধার করেন তখন ওই ব্যক্তি বলে  অধমর্ণ ।

(VIII) উত্তমর্ণ (Creditor) : ব্যাঙ্ক বা সমবায় সমিতি যে টাকা ধার দেয় তাকে বলে  উত্তমর্ণ । 

 

 সুদ-কষা সম্পর্কিত বিষয়গুলির পারস্পরিক সম্পর্ক

1.  সুদের হার ও সময় অপরিবর্তিত থাকলে :

     আসল ও মোট সুদের মধ্যে সরল সম্পর্ক অর্থাৎ আসল বাড়লে মোট সুদ বাড়বে, আসল কমলে মোট সুদ কমবে ।

2.  আসল ও সময় অপরিবর্তিত থাকলে :

     সুদের হার ও মোট সুদের মধ্যে সরল সম্পর্ক অর্থাৎ সুদের হার বাড়লে মোট সুদ বাড়বে, সুদের হার কমলে মোট সুদ কমবে ।

3.  আসল ও সুদের হার অপরিবর্তিত থাকলে :

     সময় ও মোট সুদের মধ্যে সরল সম্পর্ক অর্থাৎ সময় বাড়লে মোট সুদ বাড়বে, সময় কমলে মোট সুদ কমবে ।

4.  সুদের হার ও মোট সুদ অপরিবর্তিত থাকলে :

     আসল ও সময়ের মধ্যে ব্যস্ত সম্পর্ক অর্থাৎ আসল বাড়লে ঐ মোট সুদ পেতে সময় কম লাগবে, আসল কমলে সময় বেশি লাগবে ।

5.  আসল ও মোট সুদ অপরিবর্তিত থাকলে :

     সুদের হার ও সময়ের মধ্যে ব্যস্ত সম্পর্ক অর্থাৎ সুদের হার বাড়লে ঐ মোট সুদ পেতে সময় কম লাগবে, সুদের হার কমলে সময় বেশি লাগবে ।

6.  সময় ও মোট সুদ অপরিবর্তিত থাকলে :

     আসল ও সুদের হারের মধ্যে ব্যস্ত সম্পর্ক অর্থাৎ আসল বাড়লে সুদের হার কমবে, আসল কমলে সুদের হার বাড়বে ।

 

সরল সুদ নির্ণয়ের সাধারণ সুত্র :-

যদি P = আসল, t = বছরের সংখ্যা ,  r = শতকরা বার্ষিক সুদের হার এবং I = t বছরের সুদ হয়, তবে  I = [tex] {{Prt} \over {100}} [/tex]

       100 টাকার 1 বছরের সুদ = r টাকা

[tex] \therefore [/tex] 1 টাকার 1 বছরের সুদ = [tex]{r \over {100}} [/tex] টাকা

[tex]\therefore [/tex] P টাকার 1 বছরের সুদ = [tex]{{Pr} \over {100}} [/tex] টাকা

[tex]\therefore [/tex] P টাকার  t বছরের সুদ = [tex]{{Prt} \over {100}} [/tex]

[tex]\therefore [/tex] [tex] I={{Prt} \over {100}} [/tex] টাকা

[tex]\therefore [/tex] সুদ = (আসল x সময় x সুদের হার) ÷ 100

এই সুত্র এবং আসল, সুদ ও সাবৃদ্ধিমূলের মধ্যে সম্পর্ক থেকে দেখা যাচ্ছে যে, মূলধন, বছর, সুদের হার ও সুদ বা সাবৃদ্ধিমূল এই চারটি রাশির যেকোন তিনটি দেওয়া থাকলে চতুর্থটি সহজেই পাওয়া যায় ।

*****

Related Items

সদৃশতা (Similarity)

অনুপাত ও সমানুপাত 

অনুপাত ও সমানুপাতে সঙ্গে আমাদের আগে পাটিগণিত ও বীজগণিতে পরিচয় হয়েছে। জ্যামিতিতে এই ধারণা কিভাবে প্রয়োগ করা যায় , তার আলোচনাই আমরা করব। 

কয়েকটি প্রয়োজনীয় জ্যামিতি 

বৃত্তের স্পর্শক সংক্রান্ত উপপাদ্য

বৃত্তের স্পর্শক সংক্রান্ত উপপাদ্য

সূচনা (Introduction) : আমরা পূর্বেই জেনেছি একটি সরলরেখা একই সমতলে অবস্থিত একটি বৃত্তকে দুই এর অধিক বিন্দুতে ছেদ করতে পারে না । 

বৃত্ত সংক্রান্ত উপপাদ্য

বিভিন্ন সংখ্যক বিন্দুগামী বৃত্ত আঁকার সম্ভাব্যতা । জ্যা এর উপর অঙ্কিত কেন্দ্রগামী লম্ব ও জ্যা এর সম্পর্ক প্রতিষ্ঠা । কেন্দ্র থেকে জ্যা এর দুরত্ব ও জ্যা এর দৈর্ঘ্যের সম্পর্ক ।

দ্বিঘাত সমীকরণ (Quadratic Equation)

দ্বিঘাত সমীকরণ (Quadratic Equation)

কোনো সমীকরণে অজ্ঞাত রাশির সর্বোচ্চ ঘাত হলে তাকে দ্বিঘাত সমীকরণ বলে । 

সহ-সমীকরণ

 সহ-সমীকরণ : যখন দুটি সমীকরণ যুগ্মভাবে কোনো সমস্যার সমাধানকে বহন করে তখন ওই সমীকরণদ্বয়কে বলে সহসমীকরণ । সহসমীকরণের একটিকে অপরটি থেকে বিচ্ছিন্ন করলে আলাদা আলাদা ভাবে কোনো একটি সমীকরণকে সমাধান করা সম্ভব  নয় ।