চতুর্থ অধ্যায়ঃ অসীম শ্রেণি ( Infinite Series )

Submitted by arpita pramanik on Thu, 02/17/2011 - 14:27

চতুর্থ অধ্যায়ঃ অসীম শ্রেণি ( Infinite Series )

 

সূচনা ( Introduction )

            আমরা জানি শ্রেণি দুই প্রকারের হয়। (১) সসীম শ্রেণি ( Finite Series ) এবং (২) অসীম শ্রেণি ( Infinite Series )। 

          যেসব শ্রেণির পদসংখ্যা সসীম ( finite ) তাদের সসীম শ্রেণি বলে। অন্যভাবে যেসব শ্রেণির পদসংখ্যা অসংখ্য বা অসীম তাদের অসীম শ্রেণি বলে। আমরা যেসব শ্রেণি নিয়ে পূর্বে আলোচনা করেছি তা হল সসীম শ্রেণি। 

                               সাধারণত একটি সসীম শ্রেণিকে [tex]{u_1} + {u_2} + {u_3} + ..............{u_n}[/tex] এবং একটি অসীম শ্রেণিকে [tex]{u_1} + {u_2} + {u_3} + ..............{u_n} + ...............\infty [/tex] আকারে প্রকাশ করা হয়। যেখানে [tex]{u_n}[/tex] হল n তম পদ। 

    স্পষ্টতই , একটি সসীম শ্রেণির নির্দিষ্ট সংখ্যক পদের সমষ্টি সর্বদা একটি সসীম রাশি হবে , কিন্তু একটি অসীম শ্রেণির পদগুলির সমষ্টির মান সসীম বা অসীম দুই হতে পারে। 

       এই অধ্যায়ে আমরা চার প্রকার অসীম শ্রেণি সম্পর্কে আলোচনা করবো। 

  1. অসীম গুণোত্তর শ্রেণি ( Infinite Geometric Series )
  2. সাধারণ আকারে দ্বিপদ উপপাদ্য ( Binomial Theorem in General Form)
  3. সূচক শ্রেণি ( Exponential Series )
  4. লগারিদম শ্রেণি ( Logarithmic Series )

                                                অসীম গুণোত্তর শ্রেণি ( Infinite Geometric Series )

                                       [tex]a + ar + a{r^2} + ............ + a{r^{n - 1}} + ............\infty [/tex]..............(i)

উপরের আকারে অসীম গুণোত্তর শ্রেণিকে প্রকাশ করা হয়। a হল প্রথম পদ এবং r হল সাধারণ অনুপাত। 

[tex]{S_n}[/tex] যদি (i) এর n সংখ্যক ( n সসীম সংখ্যক পদসংখ্যা ) পদের যোগফলকে সূচিত করে , তবে 

[tex]{S_n} = a\frac{{1 - {r^n}}}{{1 - r}} = \frac{a}{{1 - r}} - \frac{{a{r^n}}}{{1 - r}}[/tex]

n এর মান যখন অসীম হয় তখন তাকে গাণিতিক প্রতীকের সাহায্যে নিম্নলিখিত ভাবে প্রকাশ করা হয় 

[tex]\mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{a}{{1 - r}} - \frac{{a{r^n}}}{{1 - r}}} \right)[/tex]

r এর মানের উপর অসীম শ্রেণির যোগফলের মান বিভিন্ন হতে পারে। 

(১) যখন r প্রকৃত ভগ্নাংশ [tex]\left( { - 1 < r < 1} \right)[/tex]

r প্রকৃত ভগ্নাংশ হলে , [tex]{r^n}[/tex] এবং শুন্য এর মধ্যে যে পার্থক্য হয় তা যেকোন ক্ষুদ্র ধনাত্মক সংখ্যা হোক , তার থেকেও ক্ষুদ্র করা যায় , যদি n এর মান যথেষ্ট বৃহৎ সংখ্যা ধরা হয়। 

অতএব   [tex]\mathop {\lim }\limits_{n \to \infty } {r^n} = 0[/tex] যখন [tex]\left( { - 1 < r < 1} \right)[/tex]

সুতরাং , [tex]\mathop {\lim }\limits_{n \to \infty } {S_n} = \frac{a}{{1 - r}}[/tex]

সুতরাং যখন [tex]\left( { - 1 < r < 1} \right)[/tex] তখন অসীম গুণোত্তর শ্রেণির যোগফলের অস্তিত্ব আছে এবং এর মান

= [tex]\frac{a}{{1 - r}}[/tex]

(২) যখন r প্রকৃত ভগ্নাংশ নয় ( r > 1বা, r< -1 )

যদি r > 1 এবং r < -1 হয় , তবে n এর যে কোন বৃহৎ মানের জন্য [tex]{r^n}[/tex] এর মান আমাদের কল্পনার সম্ভব যেকোন মানের থেকে বৃহৎ হবে। সেজন্য n এর মান অসীমের দিকে অগ্রসর হলে [tex]{r^n}[/tex] এর মান কোনো নির্দিষ্ট অসীমের দিকে অগ্রসর হয়। সুতরাং n অসীমের দিকে অগ্রসর হলে [tex]{S_n}[/tex] এর কোনো সসীম মান পাওয়া যায় না। 

সুতরাং যদি r > 1 এবং r < -1 হয় তাহলে অসীম গুণোত্তর শ্রেণির কোনো যোগফল নেই। 

সংক্ষিপ্তকরণ ( Summarisation )

(i)  r প্রকৃত ভগ্নাংশ অর্থাৎ [tex]\left( { - 1 < r < 1} \right)[/tex] হলে ,

[tex]a + ar + a{r^2} + ..........\infty  = \frac{a}{{1 - r}}[/tex] হবে। 

বিশেষ ক্ষেত্রে a = 1 হলে , [tex]1 + r + {r^2} + ..........\infty  = \frac{1}{{1 - r}}[/tex] হবে। 

(ii)  r প্রকৃত ভগ্নাংশ না হলে r > 1 এবং r < -1 এর জন্য [tex]a + ar + a{r^2} + ..........\infty [/tex]

কোনো যোগফল নেই। 

উদাহরণ 1. [tex]0.\dot 3\dot 6[/tex] এই আবৃত্ত দশমিককে মূলদ সংখ্যায় প্রকাশ করো। 

সমাধান : 

[tex]\begin{array}{l}
0.\dot 3\dot 6\\
 = 0.363636.........\infty \\
 = 0.36 + 0.0036 + 0.000036 + ...........\infty \\
 = \frac{{36}}{{{{10}^2}}} + \frac{{36}}{{{{10}^4}}} + \frac{{36}}{{{{10}^6}}} + ..............\infty 
\end{array}[/tex]

[ এটি একটি অসীম গুণোত্তর শ্রেণি। যার প্রথম পদ হল [tex]\frac{{36}}{{{{10}^2}}}[/tex] এবং সাধারণ অনুপাত হল [tex]\frac{1}{{{{10}^2}}}[/tex] .স্পষ্টতই [tex] - 1 < \frac{1}{{{{10}^2}}} < 1[/tex].]

[tex] = \frac{{\frac{{36}}{{{{10}^2}}}}}{{1 - \frac{1}{{{{10}^2}}}}} = \frac{{36}}{{100}} \times \frac{{100}}{{99}} = \frac{4}{{11}}[/tex]

 

উদাহরণ 2. [tex]{S_1},{S_2},{S_3},..........{S_n}[/tex] যদি n সংখ্যক অসীম গুণোত্তর শ্রেণির যোগফল হয় , যাদের প্রথম পদ যথাক্রমে 1 , 2 , 3 , .......,n এবং সাধারণ অনুপাত যথাক্রমে [tex]\frac{1}{2},\frac{1}{3},\frac{1}{4},........,\frac{1}{{n + 1}}[/tex] হয় তবে দেখাও যে,

[tex]{S_1} + {S_2} + {S_3} + ............... + {S_n} = \frac{{n\left( {n + 3} \right)}}{2}[/tex]

সমাধান : [tex]{S_1}[/tex] হল একটি অসীম গুণোত্তর শ্রেণির যোগফল যার প্রথম পদ হল 1 এবং সাধারণ অনুপাত হল [tex]\frac{1}{2}[/tex]. স্পষ্টতই [tex] - 1 < \frac{1}{2} < 1[/tex] .

অতএব [tex]{S_1} = \frac{1}{{1 - \frac{1}{2}}} = 2[/tex]

 আবার [tex]{S_2}[/tex] হল একটি অসীম গুণোত্তর শ্রেণির যোগফল যার প্রথম পদ হল 2 এবং সাধারণ অনুপাত হল [tex]\frac{1}{3}[/tex]. স্পষ্টতই [tex] - 1 < \frac{1}{3} < 1[/tex] .

অতএব [tex]{S_2} = \frac{2}{{1 - \frac{1}{3}}} = 3[/tex]

অনুরূপে [tex]{S_3} = 4,{S_4} = 5,............,{S_n} = n + 1[/tex]

[tex]\begin{array}{l}
{S_1} + {S_2} + {S_3} + ................. + {S_n}\\
 = 2 + 3 + 4 + ............ + \left( {n + 1} \right)\\
 = \frac{n}{2}\left( {2 + n + 1} \right) = \frac{{n\left( {n + 3} \right)}}{2}
\end{array}[/tex]

 

উদাহরণ 3. যদি [tex]x = 1 + a + {a^2} + .............\infty [/tex] এবং [tex]y = 1 + b + {b^2} + .............\infty [/tex] হয় , তবে প্রমাণ করো যে 

[tex]1 + ab + {a^2}{b^2} + .............\infty  = \frac{{xy}}{{x + y - 1}}[/tex]

যখন [tex]\left( { - 1 < a < 1} \right)[/tex] এবং [tex]\left( { - 1 < b < 1} \right)[/tex] .

সমাধান : [tex]x = 1 + a + {a^2} + .............\infty [/tex] এটি একটি অসীম গুণোত্তর শ্রেণি। যেখানে প্রথম পদ =1 এবং সাধারণ অনুপাত = a  প্রশ্নানুযায়ী [tex]\left( { - 1 < a < 1} \right)[/tex] .

অতএব 

[tex]\begin{array}{l}
x = 1 + a + {a^2} + ........\infty \\
 \Rightarrow x = \frac{1}{{1 - a}}\\
 \Rightarrow 1 - a = \frac{1}{x}\\
 \Rightarrow a = 1 - \frac{1}{x} = \frac{{x - 1}}{x}
\end{array}[/tex]

 [tex]y = 1 + b + {b^2} + .............\infty [/tex] এটি একটি অসীম গুণোত্তর শ্রেণি। যেখানে প্রথম পদ =1 এবং সাধারণ অনুপাত = b  প্রশ্নানুযায়ী [tex]\left( { - 1 < b < 1} \right)[/tex] .

অনুরূপে আমরা প্রমাণ করতে পারি [tex]b = \frac{{y - 1}}{y}[/tex].

এখন দেখা যাচ্ছে [tex]1 + ab + {a^2}{b^2} + .............\infty [/tex] একটি অসীম গুণোত্তর শ্রেণি , যার প্রথম পদ = 1এবং সাধারণ অনুপাত = ab . প্রশ্নানুসারে [tex]\left( { - 1 < a < 1} \right)[/tex] এবং [tex]\left( { - 1 < b < 1} \right)[/tex] .সুতরাং  [tex]\left( { - 1 < ab < 1} \right)[/tex] হবে। 

অতএব 

[tex]1 + ab + {a^2}{b^2} + ........\infty  = \frac{1}{{1 - ab}}[/tex]

এখন 

[tex]\begin{array}{l}
\frac{1}{{1 - ab}}\\
 = \frac{1}{{1 - \left( {\frac{{x - 1}}{x}} \right)\left( {\frac{{y - 1}}{y}} \right)}}\\
 = \frac{1}{{\frac{{xy - \left( {x - 1} \right)\left( {y - 1} \right)}}{{xy}}}}\\
 = \frac{{xy}}{{xy - xy + x + y - 1}}\\
 = \frac{{xy}}{{x + y - 1}}
\end{array}[/tex]

সুতরাং প্রমাণিত যে [tex]1 + ab + {a^2}{b^2} + .............\infty  = \frac{{xy}}{{x + y - 1}}[/tex].

 

                                        সাধারণ আকারে দ্বিপদ উপপাদ্য ( Binomial Theorem in General Form)

n যেকোন বাস্তব সংখ্যা এবং x এর মানের সীমা ( -1 < x < 1 ) হলে , 

[tex]\begin{array}{l}
{\left( {1 + x} \right)^n} = 1 + n \cdot x + \frac{{n\left( {n - 1} \right)}}{{2!}} \cdot {x^2} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}} \cdot {x^3} + ..........\\
......... + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)......\left( {n - r + 1} \right)}}{{r!}} \cdot {x^r} + .......\infty ........(i)
\end{array}[/tex]

(১)  n এর মান ধনাত্মক অখন্ড সংখ্যা হলে 

n ধনাত্মক অখন্ড সংখ্যা হলে , প্রথম (n + 1) সংখ্যক পদ ছাড়া পরবর্তী সমস্ত পদের মান শুন্য হবে , কারণ (i) থেকে দেখা যাচ্ছে যে ডানপক্ষে (r + 1) তম ও পরবর্তী প্রত্যেক পদে (n - r + 1) উৎপাদকটি থাকে এবং এই উৎপাদকের মান শুন্য হবে যদি r = n +1 হয়। অবশ্য এক্ষেত্রে বিস্তৃতির সব মানেই সত্য , কারণ বিস্তৃতির পদসংখ্যা সসীম। 

(২)  n এর মান ধনাত্মক অখন্ড সংখ্যা না হলে 

n ধনাত্মক অখন্ড সংখ্যা না হয়ে যদি ভগ্নাংশ ( ধনাত্মক বা ঋণাত্মক )হয় , অথবা ঋণাত্মক অখন্ড সংখ্যা হলে (i) বিস্তৃতি অসীম পর্যন্ত অগ্রসর হয়, কারণ বিস্তৃতির ডানপক্ষে কোনো পদের মান শুন্য হবে না , যেহেতু r এর সবসময় কেবল ধনাত্মক অখন্ড মান হয়। সুতরাং বিস্তৃতির অসীম পর্যন্ত সীমাস্থ মান [tex]{\left( {1 + x} \right)^n}[/tex] ; সুতরাং এটি অভিসারী শ্রেণি যখন ( -1 < x < 1 ) 

সুতরাং n ঋণাত্মক অখন্ড সংখ্যা বা ভগ্নাংশ হলে 

[tex]\begin{array}{l}
{\left( {1 + x} \right)^n} = 1 + n \cdot x + \frac{{n\left( {n - 1} \right)}}{{2!}} \cdot {x^2} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}} \cdot {x^3} + ..........\\
......... + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)......\left( {n - r + 1} \right)}}{{r!}} \cdot {x^r} + .......\infty ........(i)
\end{array}[/tex]

যেখানে ( -1 < x < 1 ) .

 

কয়েকটি প্রয়োজনীয় বিস্তৃতি ( Some useful Expansions )

  1. [tex]{\left( {1 - x} \right)^{ - 1}} = 1 + x + {x^2} + {x^3} + ...........\infty [/tex]
  2. [tex]{\left( {1 + x} \right)^{ - 1}} = 1 - x + {x^2} - {x^3} + ...........\infty [/tex]
  3. [tex]{\left( {1 - x} \right)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + ...........\infty [/tex]
  4. [tex]{\left( {1 + x} \right)^{ - 2}} = 1 - 2x + 3{x^2} - 4{x^3} + ...........\infty [/tex]
  5. [tex]{\left( {1 - x} \right)^{ - n}} = 1 + nx + \frac{{n\left( {n + 1} \right)}}{{2!}}{x^2} + \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty [/tex]
  6. [tex]{\left( {1 + x} \right)^{ - n}} = 1 - nx + \frac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty [/tex]

সংক্ষিপ্তকরণ ( Summarisation )

(i)  n এর মান ঋণাত্মক অখন্ড সংখ্যা বা ভগ্নাংশ ( ধনাত্মক বা ঋণাত্মক )হলে ,

[tex]\begin{array}{l}
{\left( {1 + x} \right)^n} = 1 + n \cdot x + \frac{{n\left( {n - 1} \right)}}{{2!}} \cdot {x^2} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}} \cdot {x^3} + ..........\\
......... + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)......\left( {n - r + 1} \right)}}{{r!}} \cdot {x^r} + .......\infty
\end{array}[/tex]

যেখানে ( -1 < x < 1 ) 

(ii)  বিস্তৃতির সাধারণ পদ = ( r + 1 ) তম পদ = [tex]{t_{r + 1}} = \frac{{n\left( {n - 1} \right)\left( {n - 2} \right).....\left( {n - r + 1} \right)}}{{r!}} \cdot {x^r}[/tex]

 

উদাহরণ 1. [tex]{\left( {4 + 3a} \right)^{\frac{3}{2}}}[/tex] চতুর্থ পদ পর্যন্ত বিস্তৃতি নির্ণয় করো। 

সমাধান : 

[tex]\begin{array}{l}
{\left( {4 + 3a} \right)^{\frac{3}{2}}}\\
 = {\left\{ {4\left( {1 + \frac{{3a}}{4}} \right)} \right\}^{\frac{3}{2}}}\\
 = {\left( {{2^2}} \right)^{\frac{3}{2}}}\left( {1 + \frac{3}{2} \cdot \frac{{3a}}{4} + \frac{{\frac{3}{2}\left( {\frac{3}{2} - 1} \right)}}{{2!}}{{\left( {\frac{{3a}}{4}} \right)}^2} + \frac{{\frac{3}{2}\left( {\frac{3}{2} - 1} \right)\left( {\frac{3}{2} - 2} \right)}}{{3!}}{{\left( {\frac{{3a}}{4}} \right)}^3} + ........\infty } \right)\\
 = {2^3}\left( {1 + \frac{{9a}}{8} + \frac{{\frac{3}{2} \cdot \frac{1}{2}}}{2} \cdot \frac{{9{a^2}}}{{16}} + \frac{{\frac{3}{2} \cdot \frac{1}{2} \cdot \left( { - \frac{1}{2}} \right)}}{6} \cdot \frac{{27{a^3}}}{{64}} + ........\infty } \right)\\
 = 8\left( {1 + \frac{{9a}}{8} + \frac{3}{8} \cdot \frac{{9{a^2}}}{{16}} - \frac{3}{{48}} \cdot \frac{{27{a^3}}}{{64}} + ........\infty } \right)\\
 = 8 + 9a + \frac{{27}}{{16}}{a^2} - \frac{{27}}{{128}}{a^3} + ........\infty 
\end{array}[/tex]

 

উদাহরণ 2. কোন শর্ত সিদ্ধ হলে [tex]{\left( {1 - 2x} \right)^{ - \frac{1}{2}}}[/tex] কে x এর ঘাতের উর্ধক্রমে বিস্তৃত করা সম্ভব ? শর্তটি সিদ্ধ হলে দেখাও যে , এই বিস্তৃতির ( r + 1 ) তম পদ হয় , 

[tex]\frac{{1 \cdot 3 \cdot 5 \cdot ...............\left( {2r - 1} \right)}}{{r!}} \cdot {x^r}[/tex]                       [H.S.  '90]

সমাধান : [tex]{\left( {1 - 2x} \right)^{ - \frac{1}{2}}}[/tex] কে x এর ঘাতের উর্ধক্রমে বিস্তৃত করার শর্ত হল 

[tex]\left| {2x} \right| < 1 \Rightarrow \left| x \right| < \frac{1}{2} \Rightarrow  - \frac{1}{2} < x < \frac{1}{2}[/tex]

উপরের শর্ত সিদ্ধ হলে  [tex]{\left( {1 - 2x} \right)^{ - \frac{1}{2}}}[/tex] এর বিস্তৃতিতে ( r + 1 ) তম পদ হবে 

[tex]\begin{array}{l}
{t_{r + 1}} = \frac{{ - \frac{1}{2}\left( { - \frac{1}{2} - 1} \right)\left( { - \frac{1}{2} - 2} \right).......\left( { - \frac{1}{2} - r + 1} \right)}}{{r!}} \cdot {\left( { - 2x} \right)^r}\\
 \Rightarrow {t_{r + 1}} = \frac{{ - \frac{1}{2}\left( { - \frac{3}{2}} \right)\left( { - \frac{5}{2}} \right)........\left( {\frac{{ - 1 - 2r + 2}}{2}} \right)}}{{r!}} \cdot {\left( { - 2x} \right)^r}\\
 = \frac{{1 \cdot 3 \cdot 5..........\left( {2r - 1} \right)}}{{r!}} \cdot {\left( { - \frac{1}{2}} \right)^r} \cdot {\left( { - 2x} \right)^r}\\
 = \frac{{1 \cdot 3 \cdot 5..........\left( {2r - 1} \right)}}{{r!}} \cdot {x^r}
\end{array}[/tex]

( প্রমাণিত )

 

উদাহরণ 3. সমষ্টি নির্ণয় করো [tex]\frac{5}{{3 \cdot 6}} + \frac{{5 \cdot 7}}{{3 \cdot 6 \cdot 9}} + \frac{{5 \cdot 7 \cdot 9}}{{3 \cdot 6 \cdot 9 \cdot 12}} + ..........\infty [/tex]

সমাধান : 

[tex]\begin{array}{l}
\frac{5}{{3 \cdot 6}} + \frac{{5 \cdot 7}}{{3 \cdot 6 \cdot 9}} + \frac{{5 \cdot 7 \cdot 9}}{{3 \cdot 6 \cdot 9 \cdot 12}} + ..........\infty \\
 = \frac{1}{3}\left\{ {\frac{{3 \cdot 5}}{{3 \cdot 6}} + \frac{{3 \cdot 5 \cdot 7}}{{3 \cdot 6 \cdot 9}} + \frac{{3 \cdot 5 \cdot 7 \cdot 9}}{{3 \cdot 6 \cdot 9 \cdot 12}} + ........\infty } \right\}\\
 = \frac{1}{3}\left\{ {\frac{{\frac{3}{2} \cdot \frac{5}{2}}}{2}{{\left( {\frac{2}{3}} \right)}^2} + \frac{{\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2}}}{6}{{\left( {\frac{2}{3}} \right)}^3} + \frac{{\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2} \cdot \frac{9}{2}}}{{24}}{{\left( {\frac{2}{3}} \right)}^4} + ......\infty } \right\}\\
 = \frac{1}{3}\left\{ {1 + \left( {\frac{3}{2}} \right) \cdot \left( {\frac{2}{3}} \right) + \frac{{\frac{3}{2}\left( {\frac{3}{2} + 1} \right)}}{{2!}}{{\left( {\frac{2}{3}} \right)}^2} + \frac{{\frac{3}{2}\left( {\frac{3}{2} + 1} \right)\left( {\frac{3}{2} + 2} \right)}}{{3!}}{{\left( {\frac{2}{3}} \right)}^3} + \frac{{\frac{3}{2}\left( {\frac{3}{2} + 1} \right)\left( {\frac{3}{2} + 2} \right)\left( {\frac{3}{2} + 3} \right)}}{{4!}}{{\left( {\frac{2}{3}} \right)}^4} + .....\infty  - 1 - \left( {\frac{3}{2}} \right) \cdot \left( {\frac{2}{3}} \right)} \right\}\\
 = \frac{1}{3}\{ {\left( {1 - \frac{2}{3}} \right)^{ - \frac{3}{2}}} - 1 - 1\} \\
 = \frac{1}{3}\{ {\left( {\frac{1}{3}} \right)^{ - \frac{3}{2}}} - 2\} \\
 = \frac{1}{3}\left\{ {{3^{\frac{3}{2}}} - 2} \right\}\\
 = \frac{1}{3}\left\{ {3\sqrt 3  - 2} \right\}
\end{array}[/tex]

 

                                                                সূচক শ্রেণি ( Exponential Series )

আমরা জানি 

[tex]\begin{array}{l}
{\left( {1 + \frac{1}{n}} \right)^n} = 1 + n \cdot \frac{1}{n} + \frac{{n\left( {n - 1} \right)}}{{2!}} \cdot \frac{1}{{{n^2}}} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}} \cdot \frac{1}{{{n^3}}} + ........\\
 = 1 + 1 + \frac{1}{{2!}} \cdot \left( {1 - \frac{1}{n}} \right) + \frac{1}{{3!}} \cdot \left( {1 - \frac{1}{n}} \right) \cdot \left( {1 - \frac{2}{n}} \right) + ........
\end{array}[/tex]

এটি একটি অভেদ n এর সব মানে এটি সত্য। যখন n অসীমের দিকে অগ্রসর হয় তখন অভেদটির সীমাস্থ মান হয় 

[tex]\begin{array}{l}
\mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{1}{n}} \right)^n} = \mathop {\lim }\limits_{n \to \infty } \left\{ {1 + 1 + \frac{1}{{2!}} \cdot \left( {1 - \frac{1}{n}} \right) + \frac{1}{{3!}} \cdot \left( {1 - \frac{1}{n}} \right) \cdot \left( {1 - \frac{2}{n}} \right) + ........} \right\}\\
 = 1 + 1 + \frac{1}{{2!}} + \frac{1}{{3!}} + .........
\end{array}[/tex]

যা একটি অসীম শ্রেণি। এই অসীম শ্রেণিকে সাধারণত e অক্ষর দ্বারা সূচিত করা হয়। একে e শ্রেণি বলে। 

[tex]e = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + .........[/tex]................(i)

e শ্রেণির দুটি বৈশিষ্ট্য আছে 

  1. e এর মান সসীম ও 2 এবং 3 এর মধ্যবর্তী। 
  2. e একটি অমেয় রাশি ( incommensurable number ) বা অমূলদ রাশি ( irrational number ).

বৈশিষ্ট্য দুটির প্রমাণ ( Proof of the properties )

e এর মান সসীম ও 2 এবং 3 এর মধ্যবর্তী

প্রমাণ : আমরা জানি [tex]e = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + .........[/tex].

অতএব e = 2 + ধনাত্মক রাশি সমূহের সমষ্টি , সুতরাং e > 2

এখন [tex]\frac{1}{{3!}} = \frac{1}{6} < \frac{1}{{{2^2}}},\frac{1}{{4!}} = \frac{1}{{24}} < \frac{1}{{{2^3}}}....[/tex]

[tex]\begin{array}{l}
e < 1 + 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ............\\
 \Rightarrow e < 1 + \frac{1}{{1 - \frac{1}{2}}} = 1 + 2 = 3
\end{array}[/tex]

দেখা যাচ্ছে 2 < e < 3 

e একটি অমেয় রাশি ( incommensurable number  ) বা অমূলদ রাশি ( irrational number )

প্রমাণ : যদি সম্ভব হয় ধরা যাক e একটি প্রমেয় রাশি ( commensurable number ) বা মূলদ রাশি ( rational number ). মনে করি [tex]e = \frac{m}{n}[/tex], যেখানে m ও n হল ধনাত্মক অখন্ড সংখ্যা এবং [tex]n \ne 0[/tex].

অতএব [tex]\frac{m}{n} = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + ........ + \frac{1}{{n!}} + \frac{1}{{\left( {n + 1} \right)!}} + ......[/tex]

উভয়পক্ষে n! গুণ করে পাই 

[tex]m \cdot \left( {{n -1}!} \right) = n! + \frac{{n!}}{{1!}} + \frac{{n!}}{{2!}} + \frac{{n!}}{{3!}} + ....1 + \frac{1}{{\left( {n + 1} \right)}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + .......[/tex]

[tex]\frac{1}{{\left( {n + 1} \right)}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + .......[/tex]=একটি অখণ্ড সংখ্যা। ....(ii)

[ [tex]m \cdot \left( {n - 1} \right)![/tex] একটি অখন্ড সংখ্যা এবং [tex]n! + \frac{{n!}}{{1!}} + \frac{{n!}}{{2!}} + \frac{{n!}}{{3!}} + ....1[/tex] রাশিটি একটি অখন্ড সংখ্যা। তাই দুটি রাশির অন্তরও একটি অখন্ড সংখ্যা হবে ]

এখন , [tex]\frac{1}{{n + 1}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + ............ > \frac{1}{{n + 1}}[/tex] যেহেতু প্রত্যেক পদ ধনাত্মক। 

আবার

 [tex]\begin{array}{l}
\frac{1}{{n + 1}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}} + ............\\
 < \frac{1}{{\left( {n + 1} \right)}} + \frac{1}{{{{\left( {n + 1} \right)}^2}}} + \frac{1}{{{{\left( {n + 1} \right)}^3}}} + ......
\end{array}[/tex]

অর্থাৎ 

[tex]\begin{array}{l}
\frac{1}{{n + 1}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}} + ............\\
 < \frac{{\frac{1}{{n + 1}}}}{{1 - \frac{1}{{n + 1}}}} = \frac{1}{n}
\end{array}[/tex]

সুতরাং (ii) [tex]\frac{1}{{n + 1}}[/tex] ও [tex]\frac{1}{n}[/tex] এর মধ্যবর্তী। অতএব (ii) একটি প্রকৃত ভগ্নাংশ এবং একটি অখন্ড সংখ্যার মধ্যবতী , যা সম্ভব নয়। তাই e একটি প্রমেয় বা মূলদ রাশি হতে পারেনা। e একটি অমেয় রাশি। 

 

সূচক শ্রেণি ( Exponential Series )

[tex]{e^x} = 1 + \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + ........... + \frac{{{x^r}}}{{r!}} + .....\infty [/tex]

উপরের অসীম শ্রেণিটিকে সূচক শ্রেণি বলে। 

অভেদটির প্রমাণ 

[tex]\begin{array}{l}
{\left( {1 + \frac{1}{n}} \right)^{nx}} = 1 + nx \cdot \frac{1}{n} + \frac{{nx \cdot \left( {nx - 1} \right)}}{{2!}} \cdot \frac{1}{{{n^2}}} + \frac{{nx \cdot \left( {nx - 1} \right) \cdot \left( {nx - 2} \right)}}{{3!}} \cdot \frac{1}{{{n^3}}} + .......\infty \\
 \Rightarrow {\left\{ {{{\left( {1 + \frac{1}{n}} \right)}^n}} \right\}^x} = 1 + x + \frac{{x \cdot \left( {x - \frac{1}{n}} \right)}}{{2!}} + \frac{{x \cdot \left( {x - \frac{1}{n}} \right) \cdot \left( {x - \frac{2}{n}} \right)}}{{3!}} + ......\infty 
\end{array}[/tex]

এখন [tex]n \to \infty [/tex] হলে [tex]{\left( {1 + \frac{1}{n}} \right)^n} \to e[/tex] আগেই প্রমাণ হয়েছে। 

অতএব n অসীমের দিকে অগ্রসর হলে আমরা পাই 

[tex]\begin{array}{l}
\mathop {\lim }\limits_{n \to \infty } {\left\{ {{{\left( {1 + \frac{1}{n}} \right)}^n}} \right\}^x} = \mathop {\lim }\limits_{n \to \infty } \{ 1 + x + \frac{{x \cdot \left( {x - \frac{1}{n}} \right)}}{{2!}} + \frac{{x \cdot \left( {x - \frac{1}{n}} \right) \cdot \left( {x - \frac{2}{n}} \right)}}{{3!}} + ......\infty \} \\
 \Rightarrow {\left\{ {\mathop {\lim }\limits_{n \to \infty } {{\left( {1 + \frac{1}{n}} \right)}^n}} \right\}^x} = 1 + \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}}.......\infty \\
 \Rightarrow {e^x} = 1 + \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}}.......\infty 
\end{array}[/tex]

 

[tex]{a^x}[/tex] এর বিস্তৃতি ( Expansion of [tex]{a^x}[/tex] )

মনে করি [tex]{\log _e}a = m \Rightarrow {e^m} = a[/tex]

[tex]\begin{array}{l}
{a^x} = {\left( {{e^m}} \right)^x} = {e^{mx}} = 1 + \frac{{mx}}{{1!}} + \frac{{{{\left( {mx} \right)}^2}}}{{2!}} + \frac{{{{\left( {mx} \right)}^3}}}{{3!}} + .......\infty \\
 \Rightarrow {a^x} = 1 + \frac{{({{\log }_e}a)}}{{1!}} \cdot x + \frac{{{{\left( {{{\log }_e}a} \right)}^2}}}{{2!}} \cdot {x^2} + \frac{{{{\left( {{{\log }_e}a} \right)}^3}}}{{3!}} \cdot {x^3} + .......\infty 
\end{array}[/tex]

 

সংক্ষিপ্তকরণ ( Summarisation )

1. x এর সব মানে ,

[tex]\begin{array}{l}
{e^x} = 1 + \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + .......... + \frac{{{x^r}}}{{r!}} + .....\infty \\
{e^{ - x}} = 1 - \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} - \frac{{{x^3}}}{{3!}} + ......... + {\left( { - 1} \right)^r} \cdot \frac{{{x^r}}}{{r!}} + ......\infty 
\end{array}[/tex]

2.

[tex]\begin{array}{l}
(i)e = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + ..........\infty \\
(ii){e^{ - 1}} = 1 - \frac{1}{{1!}} + \frac{1}{{2!}} - \frac{1}{{3!}} + ...........\infty 
\end{array}[/tex]

3. [tex]{a^x} = 1 + \frac{{({{\log }_e}a)}}{{1!}} \cdot x + \frac{{{{\left( {{{\log }_e}a} \right)}^2}}}{{2!}} \cdot {x^2} + \frac{{{{\left( {{{\log }_e}a} \right)}^3}}}{{3!}} \cdot {x^3} + .......\infty [/tex]

 

উদাহরণ 1. দেখাও যে [tex]m \ne 1[/tex] হলে ,

[tex]1 + \frac{{1 + m}}{{2!}} + \frac{{1 + m + {m^2}}}{{3!}} + \frac{{1 + m + {m^2} + {m^3}}}{{4!}} + .........\infty  = \frac{{{e^m} - e}}{{m - 1}}[/tex]               [H.S. '84]

সমাধান : মনে করি n তম পদ =[tex]{t_n}[/tex].

অতএব [tex]{t_n} = \frac{{1 + m + {m^2} + ......... + {m^{n - 1}}}}{{n!}} = \frac{{1 - {m^n}}}{{1 - m}} \cdot \frac{1}{{n!}}[m \ne 1][/tex]

[tex]{t_1} = \frac{{1 - m}}{{1 - m}} \cdot \frac{1}{{1!}};{t_2} = \frac{{1 - {m^2}}}{{1 - m}} \cdot \frac{1}{{2!}};{t_3} = \frac{{1 - {m^3}}}{{1 - m}} \cdot \frac{1}{{3!}}[/tex]

প্রদত্ত অসীম শ্রেণিটি হল 

[tex]\begin{array}{l}
\frac{{1 - m}}{{1 - m}} \cdot \frac{1}{{1!}} + \frac{{1 - {m^2}}}{{1 - m}} \cdot \frac{1}{{2!}} + \frac{{1 - {m^3}}}{{1 - m}} \cdot \frac{1}{{3!}} + ........\infty \\
 = \frac{1}{{1 - m}}\left[ {\frac{{\left( {1 - m} \right)}}{{1!}} + \frac{{\left( {1 - {m^2}} \right)}}{{2!}} + \frac{{\left( {1 - {m^3}} \right)}}{{3!}} + ......\infty } \right]\\
 = \frac{1}{{1 - m}}\left[ {\left( {\frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + .....\infty } \right) - \left( {\frac{m}{{1!}} + \frac{{{m^2}}}{{2!}} + \frac{{{m^3}}}{{3!}} + .....\infty } \right)} \right]\\
 = \frac{1}{{1 - m}}\left[ {\left( {1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + .....\infty } \right) - \left( {1 + \frac{m}{{1!}} + \frac{{{m^2}}}{{2!}} + \frac{{{m^3}}}{{3!}} + .....\infty } \right)} \right]\\
 = \frac{1}{{1 - m}}\left[ {e - {e^m}} \right]\\
 = \frac{{{e^m} - e}}{{m - 1}}
\end{array}[/tex]

 

উদাহরণ 2. [tex]\frac{{1 - 2x - 3{x^2}}}{{{e^x}}}[/tex] এর বিস্তৃতিতে [tex]{x^n}[/tex]  এর সহগ নির্ণয় করো।                                                                                                                                                                                                        [H.S. '00]

সমাধান : 

[tex]\begin{array}{l}
\frac{{1 - 2x - 3{x^2}}}{{{e^x}}}\\
 = \left( {1 - 2x - 3{x^2}} \right){e^{ - x}}\\
 = \left( {1 - 2x - 3{x^2}} \right)\left( {1 - \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} - \frac{{{x^3}}}{{3!}} + ....... + {{\left( { - 1} \right)}^{n - 2}} \cdot \frac{{{x^{n - 2}}}}{{\left( {n - 2} \right)!}} + {{\left( { - 1} \right)}^{n - 1}} \cdot \frac{{{x^{n - 1}}}}{{\left( {n - 1} \right)!}} + {{\left( { - 1} \right)}^n}\frac{{{x^n}}}{{n!}} + ....\infty } \right)
\end{array}[/tex]

ওপরের বিস্তৃতি থেকে দেখা যায় [tex]{x^n}[/tex] এর সহগ হল 

[tex]\begin{array}{l}
{\left( { - 1} \right)^n} \cdot \frac{1}{{n!}} - 2{\left( { - 1} \right)^{n - 1}} \cdot \frac{1}{{\left( {n - 1} \right)!}} - 3{\left( { - 1} \right)^{n - 2}} \cdot \frac{1}{{\left( {n - 2} \right)!}}\\
 = {\left( { - 1} \right)^n} \cdot \frac{1}{{n!}}\left[ {1 + 2n - 3n\left( {n - 1} \right)} \right]\\
 = \frac{{{{\left( { - 1} \right)}^n}}}{{n!}}\left[ {1 + 5n - 3{n^2}} \right]
\end{array}[/tex]

 

 

                                                              লগারিদম শ্রেণি ( Logarithmic Series )

যদি [tex]\left( { - 1 < x \le 1} \right)[/tex] হয় , তবে 

[tex]x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + ....... + {\left( { - 1} \right)^{n - 1}}\frac{{{x^n}}}{n} + .......\infty [/tex]

এই শ্রেণিটি অভিসারী হয় এবং এর সমষ্টিকে [tex]{\log _e}\left( {1 + x} \right)[/tex] দ্বারা সূচিত করা হয়। অর্থাৎ 

[tex]{\log _e}\left( {1 + x} \right) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + ....... + {\left( { - 1} \right)^{n - 1}}\frac{{{x^n}}}{n} + .......\infty [/tex]                [tex]\left( { - 1 < x \le 1} \right)[/tex].......(i)

উপরের বিস্তৃতিকে লগারিদম শ্রেণি ( Logarithmic Series ) বলে। 

 

কয়েকটি বিশেষ ক্ষেত্র ( Some Special Case )

1.  (i) বিস্তৃতিতে -x  , x এর স্থানে বসিয়ে পাই 

[tex]\begin{array}{l}
{\log _e}\left( {1 - x} \right) =  - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} - ..............\infty \\
\left( { - 1 \le x < 1} \right)    
\end{array}[/tex]

                                                                           .................(ii)

2.  (i) বিস্তৃতিতে x = 1 বসিয়ে পাই 

[tex]\begin{array}{l}
{\log _e}\left( {1 + 1} \right) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ..............\infty \\
 \Rightarrow {\log _e}2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ..............\infty 
\end{array}[/tex]

                                                                                  ..................(iii)

3.  (i) -(ii) করে পাই যখন ( -1 < x < 1 )

[tex]\begin{array}{l}
{\log _e}\left( {1 + x} \right) - {\log _e}\left( {1 - x} \right)\\
 = \left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + .......\infty } \right) - \left( { - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} - .......\infty } \right)\\
 \Rightarrow {\log _e}\left( {\frac{{1 + x}}{{1 - x}}} \right) = 2\left( {x + \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + .......\infty } \right)\\
 \Rightarrow \frac{1}{2}{\log _e}\left( {\frac{{1 + x}}{{1 - x}}} \right) = \left( {x + \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + ......\infty } \right)
\end{array}[/tex]

                                                                                  ......................(iv)

4.  (iv) নং সমীকরণে মনে করি [tex]\frac{{1 + x}}{{1 - x}} = \frac{m}{n}[/tex] (m > n ) .

অর্থাৎ [tex]\frac{{1 + x + 1 - x}}{{1 + x - 1 + x}} = \frac{{m + n}}{{m - n}} \Rightarrow \frac{1}{x} = \frac{{m + n}}{{m - n}} \Rightarrow x = \frac{{m - n}}{{m + n}}[/tex]

[tex]{\log _e}\frac{m}{n} = 2\left[ {\left( {\frac{{m - n}}{{m + n}}} \right) + \frac{1}{3}{{\left( {\frac{{m - n}}{{m + n}}} \right)}^3} + \frac{1}{5}{{\left( {\frac{{m - n}}{{m + n}}} \right)}^5} + ......\infty } \right][/tex]

                                                                                          .................(v)

5.  (v) নং সমীকরণে n = 1 বসিয়ে পাই 

[tex]{\log _e}m = 2\left[ {\left( {\frac{{m - 1}}{{m + 1}}} \right) + \frac{1}{3}{{\left( {\frac{{m - 1}}{{m + 1}}} \right)}^3} + \frac{1}{5}{{\left( {\frac{{m - 1}}{{m + 1}}} \right)}^5} + ......\infty } \right][/tex]

                                                                                          ....................(vi)

6.  (v) নং সমীকরণে m = n + 1 বসিয়ে পাই

[tex]\begin{array}{l}
{\log _e}\frac{{n + 1}}{n} = 2\left[ {\left( {\frac{{n + 1 - n}}{{n + 1 + n}}} \right) + \frac{1}{3}{{\left( {\frac{{n + 1 - n}}{{n + 1 + n}}} \right)}^3} + \frac{1}{5}{{\left( {\frac{{n + 1 - n}}{{n + 1 + n}}} \right)}^5} + ......\infty } \right]\\
 \Rightarrow {\log _e}\left( {n + 1} \right) - {\log _e}n = 2\left[ {\frac{1}{{\left( {2n + 1} \right)}} + \frac{1}{3} \cdot \frac{1}{{{{\left( {2n + 1} \right)}^3}}} + \frac{1}{5} \cdot \frac{1}{{{{\left( {2n + 1} \right)}^5}}}} \right]
\end{array}[/tex]

                                                                                              ..................(vii)

7.  (i) নং সমীকরণে [tex]x = \frac{1}{n}[/tex] এবং [tex]x = ( - \frac{1}{n})[/tex] বসিয়ে পাই 

[tex]\begin{array}{l}
{\log _e}\left( {1 + \frac{1}{n}} \right) = \frac{1}{n} - \frac{1}{2} \cdot {\left( {\frac{1}{n}} \right)^2} + \frac{1}{3} \cdot {\left( {\frac{1}{n}} \right)^3} - \frac{1}{4}{\left( {\frac{1}{n}} \right)^4} + ...........\infty \\
 \Rightarrow {\log _e}\left( {\frac{{n + 1}}{n}} \right) = \frac{1}{n} - \frac{1}{{2{n^2}}} + \frac{1}{{3{n^3}}} - \frac{1}{{4{n^4}}} + ..........\infty \\
 \Rightarrow {\log _e}\left( {n + 1} \right) - {\log _e}n = \frac{1}{n} - \frac{1}{{2{n^2}}} + \frac{1}{{3{n^3}}} - \frac{1}{{4{n^4}}} + ..........\infty 
\end{array}[/tex]

                                                                                                    .........(viii)

[tex]\begin{array}{l}
{\log _e}\left( {1 - \frac{1}{n}} \right) = ( - \frac{1}{n}) - \frac{1}{2} \cdot {\left( { - \frac{1}{n}} \right)^2} + \frac{1}{3} \cdot {\left( { - \frac{1}{n}} \right)^3} - \frac{1}{4}{\left( { - \frac{1}{n}} \right)^4} + ...........\infty \\
 \Rightarrow {\log _e}\left( {\frac{{n - 1}}{n}} \right) =  - \frac{1}{n} - \frac{1}{{2{n^2}}} - \frac{1}{{3{n^3}}} - \frac{1}{{4{n^4}}} - ..........\infty \\
 \Rightarrow {\log _e}\left( {n - 1} \right) - {\log _e}n =  - \frac{1}{n} - \frac{1}{{2{n^2}}} - \frac{1}{{3{n^3}}} - \frac{1}{{4{n^4}}} - ..........\infty \\
 \Rightarrow {\log _e}n - {\log _e}\left( {n - 1} \right) = \frac{1}{n} + \frac{1}{{2{n^2}}} + \frac{1}{{3{n^3}}} + \frac{1}{{4{n^4}}} + ..........\infty 
\end{array}[/tex]

                                                                                       ........................(ix)

(viii) + (ix) করে পাই 

[tex]{\log _e}\left( {n + 1} \right) - {\log _e}\left( {n - 1} \right) = 2\left[ {\frac{1}{n} + \frac{1}{{3{n^3}}} + \frac{1}{{5{n^5}}} + ........\infty } \right][/tex]

                                                                                               ...................(x)

 

আমরা জানি [tex]{\log _{10}}x = {\log _e}x \times {\log _{10}}e = \frac{{{{\log }_e}x}}{{{{\log }_e}10}} = \mu  \cdot {\log _e}x[/tex] এই সমীকরণ অনুযায়ী আমরা যেকোন সংখ্যার লগারিদমের মান নির্ণয় করতে পারি। 

যেখানে [tex]\mu  = \frac{1}{{{{\log }_e}10}} = \frac{1}{{2.3025822}} = 0.4342945..[/tex]

সংক্ষিপ্তকরণ ( Summarisation )

  1. [tex]{\log _e}\left( {1 + x} \right) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + ...........\infty [/tex] যখন [tex]\left( { - 1 < x \le 1} \right)[/tex]
  2. [tex]{\log _e}\left( {1 - x} \right) =  - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} - ...........\infty [/tex] যখন [tex]\left( { - 1 \le x < 1} \right)[/tex]
  3. [tex]\frac{1}{2}{\log _e}\frac{{1 + x}}{{1 - x}} = x + \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + .............\infty [/tex] যখন ( -1 < x < 1)
  4. [tex]{\log _e}2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ............\infty [/tex]
  5. [tex]{\log _{10}}m = \mu {\log _e}m[/tex] যেখানে [tex]\mu  = \frac{1}{{{{\log }_e}10}} = 0.4342945[/tex], m যেকোন ধনাত্মক অখন্ড সংখ্যা। 

 

উদাহরণ 1. [tex]y = x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} + \frac{{{x^4}}}{4} + .....[/tex] হলে দেখাও যে , [tex]x = y - \frac{{{y^2}}}{{1!}} + \frac{{{y^3}}}{{2!}} - \frac{{{y^4}}}{{3!}} + .......[/tex]       [H.S.  '89]

সমাধান :

[tex]\begin{array}{l}
y = x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} + \frac{{{x^4}}}{4} + ......\\
 \Rightarrow  - y =  - x - \frac{{{x^2}}}{2} - \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} - ......\\
 \Rightarrow  - y = {\log _e}\left( {1 - x} \right)\\
 \Rightarrow 1 - x = {e^{ - y}}\\
 \Rightarrow 1 - x = 1 - \frac{y}{{1!}} + \frac{{{y^2}}}{{2!}} - \frac{{{y^3}}}{{3!}} + \frac{{{y^4}}}{{4!}} - ......\\
 \Rightarrow  - x =  - \left( {\frac{y}{{1!}} - \frac{{{y^2}}}{{2!}} + \frac{{{y^3}}}{{3!}} - \frac{{{y^4}}}{{4!}} + ......} \right)\\
 \Rightarrow x = y - \frac{{{y^2}}}{{2!}} + \frac{{{y^3}}}{{3!}} - \frac{{{y^4}}}{{4!}} + .....
\end{array}[/tex]

 

উদাহরণ 2.  দেখাও যে [tex]{\log _2}e - {\log _4}e + {\log _8}e - {\log _{16}}e + .......\infty  = 1[/tex]       [H.S.   '94,'96,'00]

সমাধান : 

[tex]\begin{array}{l}
{\log _2}e - {\log _4}e + {\log _8}e - {\log _{16}}e + .......\infty \\
 = \frac{1}{{{{\log }_e}2}} - \frac{1}{{{{\log }_e}4}} + \frac{1}{{{{\log }_e}8}} - \frac{1}{{{{\log }_e}16}} + .....\infty \\
 = \frac{1}{{{{\log }_e}2}} - \frac{1}{{{{\log }_e}{2^2}}} + \frac{1}{{{{\log }_e}{2^3}}} - \frac{1}{{{{\log }_e}{2^4}}} + ......\infty \\
 = \frac{1}{{{{\log }_e}2}} - \frac{1}{{2{{\log }_e}2}} + \frac{1}{{3{{\log }_e}2}} - \frac{1}{{4{{\log }_e}2}} + ........\infty \\
 = \frac{1}{{{{\log }_e}2}}\left( {1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ......\infty } \right)\\
 = \frac{1}{{{{\log }_e}2}} \times {\log _e}2 = 1
\end{array}[/tex]

 

উদাহরণ 3. দেখাও যে [tex]\frac{1}{4} + \frac{1}{2} \cdot \frac{{1 + 2}}{{{4^2}}} + \frac{1}{3} \cdot \frac{{1 + 2 + {2^2}}}{{{4^3}}} + \frac{1}{4} \cdot \frac{{1 + 2 + {2^2} + {2^3}}}{{{4^4}}} + .....\infty  = {\log _e}\left( {\frac{3}{2}} \right)[/tex]

                                                                                                                 [H.S.   '92]

সমাধান : এই অসীম শ্রেণির n তম পদ [tex]{t_n}[/tex] হলে 

[tex]\begin{array}{l}
{t_n} = \frac{1}{n} \cdot \frac{{1 + 2 + {2^2} + {2^3} + ..... + {2^{n - 1}}}}{{{4^n}}}\\
 \Rightarrow {t_n} = \frac{1}{{n{4^n}}} \cdot \frac{{{2^n} - 1}}{{2 - 1}} = \frac{1}{n} \cdot \frac{{{2^n} - 1}}{{{4^n}}} = \frac{1}{n} \cdot \left( {\frac{1}{{{2^n}}} - \frac{1}{{{4^n}}}} \right)
\end{array}[/tex]

অতএব [tex]{t_1} = \frac{1}{1} \cdot \left( {\frac{1}{{{2^1}}} - \frac{1}{{{4^1}}}} \right),{t_2} = \frac{1}{2} \cdot \left( {\frac{1}{{{2^2}}} - \frac{1}{{{4^2}}}} \right),{t_3} = \frac{1}{3} \cdot \left( {\frac{1}{{{2^3}}} - \frac{1}{{{4^3}}}} \right)[/tex]

এখন 

[tex]\begin{array}{l}
{t_1} + {t_2} + {t_3} + {t_4} + ........\infty \\
 = \frac{1}{1} \cdot \left( {\frac{1}{{{2^1}}} - \frac{1}{{{4^1}}}} \right) + \frac{1}{2} \cdot \left( {\frac{1}{{{2^2}}} - \frac{1}{{{4^2}}}} \right) + \frac{1}{3} \cdot \left( {\frac{1}{{{2^3}}} - \frac{1}{{{4^3}}}} \right) + ........\infty \\
 = \left( {\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{{{2^2}}} + \frac{1}{3} \cdot \frac{1}{{{2^3}}} + ........\infty } \right) - \left( {\frac{1}{4} + \frac{1}{2} \cdot \frac{1}{{{4^2}}} + \frac{1}{3} \cdot \frac{1}{{{4^3}}} + ........\infty } \right)\\
 =  - {\log _e}\left( {1 - \frac{1}{2}} \right) + {\log _e}\left( {1 - \frac{1}{4}} \right)\\
 =  - {\log _e}\left( {\frac{1}{2}} \right) + {\log _e}\left( {\frac{3}{4}} \right)\\
 = {\log _e}\left( {\frac{3}{4} \div \frac{1}{2}} \right)\\
 = {\log _e}\left( {\frac{3}{4} \times 2} \right) = {\log _e}\left( {\frac{3}{2}} \right)
\end{array}[/tex]

 

 

 

Related Items

প্রথম অধ্যায়ঃ অন্তরকলজের ব্যাখ্যা

প্রথম অধ্যায়ঃ অন্তরকলজের ব্যাখ্যা

চতুর্থ অধ্যায়ঃ একমাত্রিক অবকল সমীকরণ

চতুর্থ অধ্যায়ঃ একমাত্রিক অবকল সমীকরণ

তৃতীয় অধ্যায়ঃ ধ্রুবক সহগবিশিষ্ট একঘাত দ্বিতীয় ক্রমের অবকল সমীকরণ

তৃতীয় অধ্যায়ঃ ধ্রুবক সহগবিশিষ্ট একঘাত দ্বিতীয় ক্রমের অবকল সমীকরণ

দ্বিতীয় অধ্যায়ঃ প্রথম ক্রম ও প্রথম মাত্রার অবকল সমীকরণ

দ্বিতীয় অধ্যায়ঃ প্রথম ক্রম ও প্রথম মাত্রার অবকল সমীকরণ

প্রথম অধ্যায়ঃ অবকল সমীকরণ

প্রথম অধ্যায়ঃ অবকল সমীকরণ