মাত্রা (Dimensions)

Submitted by arpita pramanik on Sat, 03/17/2018 - 19:42

মাত্রা (Dimensions) :

কোনো ভৌতরাশিতে (Physical quantities) মূল রাশিগুলি কীভাবে উপস্থিত থাকে তা ওই রাশির মাত্রা (Dimensions) নির্ধারণ করে ।

সংজ্ঞা : কোনো ভৌতরাশিতে (Physical quantities) গুণ বা ভাগের মাধ্যমে উপস্থিত বিভিন্ন মৌলিক রাশিগুলির চিহ্নের উপযুক্ত ঘাত সমন্বিত সাংকেতিক রাশিমালাকে ওই ভৌতরাশির মাত্রা (Dimensions) বলে ।

সকল ভৌতরাশির মাত্রা সাধারণত দৈর্ঘ্যের চিহ্ন [L], ভরের চিহ্ন [M] এবং সময়ের চিহ্ন [T] দ্বারা প্রকাশ করা হয় । [ভৌতরাশি] বললে ওই ভৌতরাশির মাত্রা বোঝায় ।

মাত্রীয় সংকেত : মাত্রার সাহায্যে কোনো ভৌতরাশিকে প্রকাশ করলে তাকে ওই ভৌতরাশির মাত্রীয় সংকেত বলে ।

কয়েকটি ভৌতরাশির মাত্রীয় সংকেত (Dimensional Formulae of some physical quantities) :

(i) [ক্ষেত্রফল] = [দৈর্ঘ্য] x [প্রস্থ] = [দৈর্ঘ্য2 ] = [L2]

    [tex]Area = \left[ L \right] \times \left[ L \right] = \left[ {{L^2}} \right][/tex]

(ii) [আয়তন] = [দৈর্ঘ্য3] = [L3]

     [tex]Volume = length \times length \times length = \left[ {{L^3}} \right][/tex]

(iii) [ঘনত্ব] = [ভর] / [আয়তন] = [tex]\frac{{\left[ M \right]}}{{\left[ {{L^3}} \right]}} = \left[ {M{L^{ - 3}}} \right][/tex]

     [tex]Density = {{mass} \over {Volumn}} = \frac{{\left[ M \right]}}{{\left[ {{L^3}} \right]}} = \left[ {M{L^{ - 3}}} \right][/tex]

(iv) [বেগ] = [সরণ] / [সময়] = [tex]\frac{{\left[ L \right]}}{{\left[ T \right]}} = \left[ {L{T^{ - 1}}} \right][/tex]

     [tex]Velocity = \frac{{distance}}{{time}} = \frac{{\left[ L \right]}}{{\left[ T \right]}} = \left[ {L{T^{ - 1}}} \right][/tex]

(v) [ত্বরণ] = [বেগ] / [সময়] = [tex]\frac{{\left[ {L{T^{ - 1}}} \right]}}{{\left[ T \right]}} = \left[ {L{T^{ - 2}}} \right][/tex]

     [tex]Acceleration = \frac{{velocity}}{{time}} = \frac{{\left[ {L{T^{ - 1}}} \right]}}{{\left[ T \right]}} = \left[ {L{T^{ - 2}}} \right][/tex]

(vi) [ভরবেগ] = [ভর] x [বেগ] = [M] x [LT-1] = [MLT-1]

(vii) [বল] = [ভর] x [ত্বরণ] = [M] x [LT-2] = [MLT-2]

       [tex]Force = mass \times acceleration = \left[ M \right]\left[ L \right]\left[ {{T^{ - 2}}} \right] = \left[ {ML{T^{ - 2}}} \right] [/tex]

(viii)  [কার্য] = [বল] x [সরণ] = [MLT-2] x [L] = [ML2T-2]

        [tex]Work = Force \times distance = \left[ {ML{T^{ - 2}}} \right] \times \left[ L \right] = \left[ {M{L^2}{T^{ - 2}}} \right] [/tex]

(ix) [ক্ষমতা] = [কার্য] / [সময়] = [tex]$\frac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ T \right]}} = \left[ {M{L^2}{T^{ - 3}}} \right][/tex]           

      [tex]Power = \frac{{work}}{{time}} = \frac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ T \right]}} = \left[ {M{L^2}{T^{ - 3}}} \right][/tex]

(x) [চাপ] = [বল] / [ক্ষেত্রফল] = [tex]\frac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right][/tex]     

     [tex]Pressure = \frac{{Force}}{{area}} = \frac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right][/tex]

কোনো ভৌতরাশির মাত্রীয় সংকেত জানা থাকলে সহজেই রাশিটির একক লেখা সম্ভব । যেমন, আয়তনের মাত্রীয় সংকেত [L3] হওয়ায় এর SI একক মিটার3 (m3) বা ঘনমিটার । অনুরূপে বেগের মাত্রীয় সংকেত [LT-1] হওয়ায় এর SI একক মিটার/সেকেন্ড (ms-1) ।

এককহীন ভৌতরাশির মাত্রা থাকে না । এদের মাত্রীয় সংকেতকে [M0L0T0] এরূপ লেখা যায় । তবে বিশেষ ক্ষেত্রে মাত্রা ছাড়াও একক থাকতে পারে । যেমন রেডিয়ান এককে প্রকাশিত কোণের মাত্রা নেই ।

মাত্রীয় সমীকরণ (Dimensional Equation) : কোনো ভৌতরাশির মাত্রাকে মৌলিক রাশিগুলির মাত্রার সঙ্গে সমন্বিত করে যে সমীকরণের আকারে প্রকাশ করা হয় তাকে ওই ভৌতরাশির মাত্রীয় সমীকরণ বলে । যেমন, কোনো ভৌতরাশি X-এর মাত্রীয় সমীকরণ [X] = [MaLbTc] যেখানে, a, b, এবং c যথাক্রমে ভর, দৈর্ঘ্য ও সময়ের ঘাত নির্দেশ করে ।

মাত্রীয় সমীকরণের সাহায্যে —

(i) এক পদ্ধতির একক থেকে অন্য পদ্ধতির এককে যাওয়া যায়,

(ii) সমীকরণের সত্যতা প্রমাণ করা যায় ।

(iii) কোনো সমীকরণে ধ্রুবক বা চলরাশির মাত্রা নির্ধারণ করা যায় ।

 

20N বলকে ডাইন প্রকাশ করো ।

বলের মাত্রীয় সমীকরণ [F] = [MLT-2] ; নিউটন ও ডাইন এককে বলের মান n1 এবং n2 হলে,

[tex]{n_2} = {n_1}\left[ {\frac{{{M_1}}}{{{M_2}}}} \right]\left[ {\frac{{{L_1}}}{{{L_2}}}} \right]{\left[ {\frac{{{T_1}}}{{{T_2}}}} \right]^2} = 20\left[ {\frac{{Kg}}{g}} \right]\left[ {\frac{m}{{cm}}} \right]{\left[ {\frac{s}{s}} \right]^2} = 20 \times 1000 \times 100 \times 1 = 2 \times {10^6}[/tex] dyne     

 

► সরল দোলকের দোলনকালে T = [tex]2\pi \sqrt {\frac{1}{g}} [/tex] সমীকরণটির সত্যতা যাচাই করো । (I = কার্যকর দৈর্ঘ্য, g = অভিকর্ষজ ত্বরণ ) ।

বামদিকের মাত্রা = [T], ডানদিকের মাত্রা [tex]\left[ {\sqrt {\frac{1}{g}} } \right] = {\left[ {\frac{L}{{L{T^{ - 2}}}}} \right]^{\frac{1}{2}}} = {\left[ {{T^2}} \right]^{\frac{1}{2}}} = \left[ T \right][/tex]

দুইদিকের মাত্রা একই হওয়ায় সমীকরণটি সঠিক ।

*****

Comments

Related Items

ক্ষারক ও ক্ষারকের ধর্ম

ক্ষারকের গুলি হল---ক্ষারকের জলীয় দ্রবণ নির্দেশকের (Indicators) বর্ণ পরিবর্তন করে । যেমন ক্ষারকের জলীয় দ্রবণ লাল লিটমাসকে নীল করে । ক্ষারকের সঙ্গে অ্যাসিডের বিক্রিয়ায় লবণ এবং জল উৎপন্ন হয় ।

অ্যাসিড ও অ্যাসিডের ধর্ম

সব অ্যাসিড কমবেশি অম্ল স্বাদ যুক্ত । লেবু, আমলকি, তেতুল, টক দই প্রভৃতিতে অ্যাসিড আছে । সেই জন্য এদের স্বাদ অম্ল যুক্ত । অ্যাসিড নির্দেশকের (Indicators) বর্ন পরিবর্তন করে । অ্যাসিডের জলীয় দ্রবণ নীল লিটমাসকে লাল করে এবং মিথাইল অরেঞ্জ এর রং কমলা থেকে লাল বর্ণে পরিণত করে । এর দ্বারা অ্যাসিডকে সনাক্ত করা হয় ।

বল এবং বলের পরিমাপ

নিউটনের প্রথম গতিসূত্র থেকে আমরা বলের সংজ্ঞা পাই । এই সূত্র থেকে বোঝা যায় কোন বস্তুর উপর বাইরে থেকে কিছু প্রয়োগ করলে তবেই বস্তুটির অচল বা সচল অবস্থার পরিবর্তন হয় । কোন জড় বস্তু জাড্য ধর্মের জন্য নিজে থেকে নিজের অচল বা সচল অবস্থার পরিবর্তন করতে পারে না ।

পদার্থের জাড্য ধর্ম (Inertia of Matter)

জড়বস্তু যে ধর্মের জন্য নিজের স্থিতিশীল বা গতিশীল অবস্থার পরিবর্তনে বাধা দেয় বা জড়বস্তু যে ধর্মের জন্য নিজে যে অবস্থায় থাকে সেই অবস্থায় থাকতে চায় সেই ধর্মকে পদার্থের জাড্য ধর্ম বা জড়তা (Inertia) বলে । এজন্য নিউটনের প্রথম গতিসূত্রকে জাড্যের সূত্র ( Law of Inertia) বলে।

নিউটনের গতিসূত্র

বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন (Sir Isaac Newton) বস্তুর গতি সম্পর্কে তিনটি মূল্যবান সূত্র আবিষ্কার করেন । এই সূত্র নিউটনের গতিসূত্র নামে পরিচিত । দার্থবিদ্যা (Physics)এবং কারিগরি বিদ্যার অনেক সমস্যার সমাধান সম্ভব হয়েছে নিউটনের গতিসূত্র দ্বারা