বীজগণিত - পূর্বপাঠের পুনরালোচনা

Submitted by arpita pramanik on Wed, 02/16/2011 - 00:10

বীজগণিত - পূর্বপাঠের পুনরালোচনা :

বীজ গণিতের সূত্রাবলী [Algebraic Formula]

চিহ্ন সংক্রান্ত সূত্র ( Formula of Sign ) :

[tex]( + ) \times ( + ) = + [/tex]

[tex]( + ) \times ( - ) = - [/tex]  

[tex]( - ) \times ( + ) = - [/tex]

[tex]( - ) \times ( - ) = + [/tex]

 

সূচক নিয়মাবলী  (Law of Indices) :

1.  [tex]{a^0} = 1;a \ne 0[/tex]

2.  [tex]{a^m} \cdot {a^n} = {a^{m + n}}[/tex]

3.  [tex]{{{a^m}} \over {{a^n}}} = {a^{m - n}}[/tex]

4.  [tex]{(ab)^m} = {a^m} \cdot {b^m}[/tex]

5.  [tex]{\left( {{a \over b}} \right)^m} = {{{a^m}} \over {{b^m}}}[/tex]

6.  [tex]{({a^m})^n} = {a^{mn}}[/tex]

7.  [tex]{a^{ - m}} = {1 \over {{a^m}}}[/tex]

8.  [tex]{a^m} = {a^n}[/tex] হলে [tex]m = n;a \ne 0,1[/tex] বা (-1)

9.  [tex]{a^m} = {b^m}[/tex] হলে [tex]a = b;m \ne 0[/tex]

 

উৎপাদক ও সমাধান সংক্রান্ত নিয়মাবলী  (Some Laws of Factor and Solution) :

1.  x চলের কোনো রাশিমালার একটি উৎপাদক ( x - a ) হলে ওই রাশিমালার x এর স্থলে a বসালে তার মান শূন্য হবে ।

2.  x চলের কোনো রাশিমালাতে x এর স্থলে a বসালে যদি রাশিমালাটির মান শূন্য হয় , তাহলে ( x - a ) ওই রাশিমালাটির একটি উৎপাদক হবে ।

3.  x চলযুক্ত কোনো সমীকরণের x = a একটি সমাধান হলে সমীকরণটিতে x = a বসালে  সমীকরণটির উভয়পক্ষের মান সমান হবে ।

4.  x , y এবং  z  বা  একাধিক চলযুক্ত সমীকরণগুলির সমাধান x = a, y = b , z = c ইত্যাদি হলে , সমীকরণগুলিতে x = a , y = b , z = c ইত্যাদি বসালে সমীকরণগুলির উভয় পক্ষের মান সমান হবে  ।

 

বিভিন্ন সূত্রাবলি [ Different Formula ] :

1.  [tex]{(a + b)^2} = {a^2} + 2ab + {b^2}[/tex]

     [tex]{(a + b)^2} = {(a - b)^2} + 4ab[/tex]

 

2.  [tex]{(a - b)^2} = {a^2} - 2ab + {b^2}[/tex]

     [tex]{(a - b)^2} = {(a + b)^2} - 4ab[/tex]

 

3.  [tex]{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca[/tex]

 

4.  [tex]{a^2} + {b^2} = {(a + b)^2} - 2ab[/tex]

      [tex]{a^2} + {b^2} = {(a - b)^2} + 2ab[/tex]

 

5.  [tex]{a^2} - {b^2} = (a + b)(a - b)[/tex]

 

6.  [tex]2({a^2} + {b^2}) = {(a + b)^2} + {(a - b)^2}[/tex]

 

7.  [tex]4ab = {(a + b)^2} - {(a - b)^2}[/tex]

 

8.  [tex]ab = {\left( {{{a + b} \over 2}} \right)^2} - {\left( {{{a - b} \over 2}}\right)^2}[/tex]

 

9.  [tex]{(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}[/tex]

     [tex]{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)[/tex]

 

10.  [tex]{(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}[/tex]

       [tex]{(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)[/tex]

 

11.  [tex]{a^3} + {b^3} = {(a + b)^3} - 3ab(a + b)[/tex]  

      [tex]{a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})[/tex]

 

12.  [tex]{a^3} - {b^3} = {(a - b)^3} + 3ab(a - b)[/tex]

      [tex]{a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})[/tex]

 

13.  [tex]{a^2} + {b^2} + {c^2} - ab - bc - ca = {1 \over 2}\left[ {{{(a - b)}^2} + {{(b - c)}^2} + {{(c - a)}^2}} \right][/tex]

 

14.  [tex]{(a + b + c)^3} = {a^3} + {b^3} + {c^3} + 3(a + b)(b + c)(c + a)[/tex]

 

15.  [tex]{a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ca)[/tex]  

*****

Related Items

সমবিন্দু সংক্রান্ত উপপাদ্য

সমবিন্দু সরলরেখা, ত্রিভুজের বাহুগুলির লম্বসমদ্বিখণ্ডকদ্বয় সমবিন্দু , ত্রিভুজের শীর্ষবিন্দু থেকে বিপরীত বাহুগুলির উপর অঙ্কিত লম্ব তিনটি সমবিন্দু , ত্রিভুজের কোণগুলির অন্তর্সমদ্বিখণ্ডক তিনটি সমবিন্দু। প্রমাণ করতে হবে একটি ত্রিভুজের দুটি কোণের বহিঃসমদ্বিখণ্ডক ...

জ্যামিতিক অঙ্কন - সম্পাদ্য

জ্যামিতিক অঙ্কন ---সম্পাদ্য

লগারিদম (Logarithm)

কোনো ধনাত্মক রাশি যদি অপর একটি ধনাত্মক রাশির ঘাতের সমান হয় , তবে ওই ধনাত্মক ঘাতের সূচককে ( Index of Power ) বলে প্রথম সারিটির লগারিদম (Logarithm) ।

ক্ষেত্রফল সংক্রান্ত উপপাদ্য

ক্ষেত্রফল হল কোনো ক্ষেত্রের পরিমাপ (Magnitude or measure). এই পরিমাপটি কোনো একক (Unit) সমেত প্রকাশ করা হয়। যেমন 50 বর্গ মিটার কোনো ক্ষেত্রের ক্ষেত্রফল। কোনো সমতলিক ক্ষেত্রের ক্ষেত্রফলের ধর্ম , ক্ষেত্রফল সংক্রান্ত উপপাদ্য (Theorems of Area) ...

ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য

ত্রিভুজ, সমবাহু ত্রিভুজ, ট্রাপিজিয়াম, চতুর্ভুজের বাহুগুলির ভেদক ও মধ্যবিন্দু সংক্রান্ত উপপাদ্য প্রমাণ ও তার প্রয়োগ