পূরক কোণের ত্রিকোণমিতিক অনুপাত

Submitted by arpita pramanik on Thu, 06/02/2011 - 07:59

পূরক কোণের ত্রিকোণমিতিক অনুপাত ( Trigonometrical Ratios of Complementary Angles )

 

পূরক কোণ ( Complementary Angles )

  জ্যামিতিতে আমরা দেখেছে যখন দুটি কোণের মানের সমষ্টি [tex]{90^ \circ }[/tex] হয় তখন কোণ দুটির একটিকে অপরটির পূরক কোণ ( Complementary Angles ) বলে। যেমন , [tex]{60^ \circ } + {30^ \circ } = {90^ \circ }[/tex] , সুতরাং [tex]{60^ \circ }[/tex] কোণের পূরক কোণ [tex]{30^ \circ }[/tex] এবং [tex]{30^ \circ }[/tex] কোণের পূরক কোণ হবে [tex]{60^ \circ }[/tex] . বিষয়টি আরো সাধারণভাবে বললে তা দাঁড়ায় একটি কোণের মান যদি [tex]\theta [/tex] হয় , তবে তার পূরক কোণের মান হবে [tex]{90^ \circ } - \theta [/tex] .

complementary angle

এখন আমাদের দেখতে হবে [tex]\theta [/tex] কোণের  ত্রিকোণমিতিক অনুপাত যদি জানা থাকে , তবে তার থেকে কী করে [tex]{90^ \circ } - \theta [/tex] কোণের ত্রিকোণমিতিক অনুপাত নির্ণয় করা যায়। 

উপরের চিত্রে [tex]\angle ABO = \theta [/tex] এবং [tex]\angle OAB = {90^ \circ } - \theta [/tex] . অতএব এদের একটি কোন অপরটির পূরক। এবার দেখা যাক এই দুটি সূক্ষকোণের পরিপ্রেক্ষিতে কোনটি অতিভুজ , কোনটি লম্ব এবং কোনটি ভূমি। 

[tex]\theta [/tex] কোণের পরিপ্রেক্ষিতে 

AB হল অতিভুজ ,

OA হল লম্ব 

এবং OB হল ভূমি 

[tex]{90^ \circ } - \theta [/tex] কোণের পরিপ্রেক্ষিতে 

AB হল অতিভুজ ,

OB হল লম্ব 

এবং OA হল ভূমি 

এখন [tex]{90^ \circ } - \theta [/tex] কোণের ক্ষেত্রে 

[tex]\begin{array}{l}
\sin \left( {{{90}^ \circ } - \theta } \right) = \frac{{OB}}{{AB}}\\
\cos ec\left( {{{90}^ \circ } - \theta } \right) = \frac{{AB}}{{OB}}\\
\cos \left( {{{90}^ \circ } - \theta } \right) = \frac{{OA}}{{AB}}\\
\sec \left( {{{90}^ \circ } - \theta } \right) = \frac{{AB}}{{OA}}\\
\tan \left( {{{90}^ \circ } - \theta } \right) = \frac{{OB}}{{OA}}\\
\cot \left( {{{90}^ \circ } - \theta } \right) = \frac{{OA}}{{OB}}
\end{array}[/tex]

কিন্তু [tex]\theta [/tex] কোণের ক্ষেত্রে 

[tex]\begin{array}{l}
\sin \theta  = \frac{{OA}}{{AB}}\\
\cos ec\theta  = \frac{{AB}}{{OA}}\\
\cos \theta  = \frac{{OB}}{{AB}}\\
\sec \theta  = \frac{{AB}}{{OB}}\\
\tan \theta  = \frac{{OA}}{{OB}}\\
\cot \theta  = \frac{{OB}}{{OC}}
\end{array}[/tex]

উপরের আলোচনা থেকে দেখতে পাওয়া যায় যে 

[tex]\begin{array}{l}
\sin \left( {{{90}^ \circ } - \theta } \right) = \cos \theta \\
\cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta \\
\cos ec\left( {{{90}^ \circ } - \theta } \right) = \sec \theta \\
\sec \left( {{{90}^ \circ } - \theta } \right) = \cos ec\theta \\
\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta \\
\cot \left( {{{90}^ \circ } - \theta } \right) = \tan \theta 
\end{array}[/tex]

 

 

 

Related Items

ত্রিকোণমিতি (Trigonometry)

ত্রিকোণামিতি (Trigonometry)

কোণের পরিমাপ

যেহেতু ত্রিকোণমিতি নামক গণিতের এই বিশেষ শাখা প্রধানত সমকোণী ত্রিভুজের সূক্ষকোণ দুটির পরিপেক্ষিতে বাহুগুলির অনুপাতের উপর প্রতিষ্ঠিত তাই প্রথমেই কোণ সম্পর্কে বিস্তারিত আলোচনার প্রয়োজন ।

লম্ব-বৃত্তাকার চোঙ

লম্ব-বৃত্তাকার চোঙ (Right-circular Cylinder)