পরমাণুর ইলেক্ট্রনের বন্টন

Submitted by arpita pramanik on Mon, 01/07/2013 - 13:31

পরমাণুর ইলেক্ট্রনের বন্টন (Electron configuration of Atom) :

K, L, M, N কক্ষে ইলেক্ট্রনের বন্টন (Distribution of Electrons in K, L, M, N shell) :

[1] ইলেকট্রনগুলি নিউক্লিয়াসের চারিদিকে শূন্যস্থানে সমকেন্দ্রিক কিন্তু বিভিন্ন তলে অবস্থিত ক্রমবর্ধমান ব্যাসার্ধের বৃত্তাকার এবং উপবৃত্তাকার কক্ষপথে তীব্রবেগে আবর্তন করে । উপবৃত্তের যে-কোনো একটি ফোকাসে পরমাণুর কেন্দ্রক বা নিউক্লিয়াস অবস্থান করে ।

[2] ইলেকট্রনগুলি নিউক্লিয়াসকে ঘিরে মোট 7টি নির্দিষ্ট কক্ষপথে আবর্তন করতে পারে । এই কক্ষপথগুলিকে মুখ্য শক্তিস্তর (Energy levels) বা কোয়ান্টাম স্তর (Quantum shells) বলে । কক্ষপথে আবর্তনকালে ইলেকট্রনগুলি কোনো শক্তি বিকিরণ করে না, এদের গড় শক্তির পরিমাণ নির্দিষ্ট থাকে । কোয়ান্টাম স্তরকে যে সংখ্যা দ্বারা প্রকাশ করা হয়, তাকে মুখ্য কোয়ান্টাম সংখ্যা (n) বলে । n -এর মান ইলেকট্রন কক্ষের শক্তিস্তর নির্দেশ করে । নিউক্লিয়াস থেকে ক্রমবর্ধমান দূরত্ব অনুসারে এই কক্ষপথগুলিকে যথাক্রমে K(n = 1), L(n = 2),  M(n = 3), N(n = 4), O(n = 5), P(n = 6) এবং Q(n = 7) কক্ষপথ বলা হয় ।

[3] প্রত্যেক কক্ষে সর্বাধিক যত সংখ্যক ইলেকট্রন থাকতে পারে সেই সংখ্যা নির্দিষ্ট । এই সংখ্যাটি হল 2 x n2, যেখানে n হল মুখ্য কোয়ান্টাম সংখ্যা । n = 1, 2, 3, 4 .... ইত্যাদি । এই নিয়ম অনুযায়ী K কক্ষে 2টি,  L কক্ষে 8টি, M কক্ষে 18টি,  N কক্ষে 32টি সর্বাধিক সংখ্যক ইলেকট্রন থাকতে পারে ।

[4] কক্ষপথের ক্রমিক সংখ্যা যাই হোক না কেন কোনো পরমাণুর সবচেয়ে বাইরের কক্ষে বা মুখ্য শক্তিস্তরে কখনো 8টির বেশি ইলেকট্রন থাকতে পারে না ।

[5] যেসব মৌলের পরমাণুর বাইরের কক্ষে 8টি ইলেকট্রন (ব্যতিক্রম : হিলিয়ামের ক্ষেত্রে 2টি) থাকে, সেই পরমাণুগুলি খুব সুস্থিত হয় । এই মৌলগুলিকে নিষ্ক্রিয় মৌল বলে । যেমন— নিয়ন, আর্গন, জেনন ইত্যাদি । এই মৌলগুলি সহজে রাসায়নিক বিক্রিয়ায় অংশ গ্রহণ করে না ।

*****

Related Items

নিউক্লীয় বিভাজন (Nuclear fission)

যে নিউক্লীয় বিক্রিয়ায় কোনো ভারী পরমাণু নিউক্লিয়াসকে উপযুক্ত শক্তিসম্পন্ন নিউট্রন কণা দ্বারা আঘাত করলে, ভারী পরমাণুর নিউক্লিয়াসটি বিভাজিত হয়ে দুটি প্রায় সমভর বিশিষ্ট টুকরায় পরিণত হয় এবং সেই সঙ্গে কয়েকটি নিউট্রন এবং প্রচুর পরিমাণে শক্তি নির্গত হয়, সেই ঘটনাকে নিউক্লীয় ...

তেজস্ক্রিয় পদার্থের ব্যবহার, দুষণ ও সতর্কীকরণ

তেজস্ক্রিয়তা সম্পূর্ণরূপে একটি নিউক্লীয় ঘটনা । প্রাকৃতিক এবং কৃত্রিম তেজস্ক্রিয় মৌলের নিউক্লিয়াসের ভাঙ্গনের ফলে যে তেজস্ক্রিয় বিকিরণের সৃষ্টি হয় তাকে চিকিত্সাবিজ্ঞান, কৃষিকার্য, শিল্প প্রতিষ্ঠান, বৈজ্ঞানিক গবেষণা প্রভৃতি নানা ক্ষেত্রে ব্যাপক ভাবে ব্যবহৃত হচ্ছে । রোগ নির্ণয় এবং রোগ ...

তেজস্ক্রিয়তার বৈশিষ্ট্য

বিভিন্ন গবেষণার পর তেজস্ক্রিয়তা সম্বন্ধে নীচের বিষয়গুলি জানা যায় । তেজস্ক্রিয়তা সম্পূর্ণরূপে একটি নিউক্লীয় ঘটনা [nuclear phenomenon] । এর সঙ্গে নিউক্লিয়াস বহির্ভূত ইলেকট্রনের কোনো সম্পর্ক নেই । যে সকল মৌলের পারমাণবিক সংখ্যা 83 -এর বেশি হয়, কেবলমাত্র তারাই ...

প্রাকৃতিক তেজস্ক্রিয়তা ও তেজস্ক্রিয় রশ্মিসমূহের ধর্মাবলী

মৌলগুলি থেকে নিঃসৃত এই জাতীয় শক্তিশালী রশ্মিকে তেজস্ক্রিয় রশ্মি বলা হয় । বিভিন্ন মৌল দ্বারা তেজস্ক্রিয় রশ্মি নিঃসরণের এই ঘটনাকে প্রাকৃতিক তেজস্ক্রিয়তা বলা হয় । যেসব পদার্থ থেকে এই রশ্মি বিকিরিত হয় সেই পদার্থগুলিকে প্রাকৃতিক তেজস্ক্রিয় পদার্থ ...

এক্স-রশ্মি ও সাধারণ আলোক-রশ্মির তুলনা

এক্স-রশ্মি এবং আলোক-রশ্মি উভয়েই তড়িৎ-চুম্বকীয় তরঙ্গ । শূন্য মাধ্যমে আলোক-রশ্মি এবং এক্স-রশ্মি উভয়ের বেগ (3 x 108 মিটার / সেকেন্ড) । উভয় রশ্মিই সরলরেখায় যায় । বিশেষ ব্যবস্থায় আলোক-রশ্মির মতো এক্স-রশ্মির প্রতিফলন এবং প্রতিসরণ হয় । উভয় রশ্মিই ফটোগ্রাফিক ...