বৃত্তের স্পর্শক সংক্রান্ত উপপাদ্য

Submitted by arpita pramanik on Wed, 02/16/2011 - 15:26

বৃত্তের স্পর্শক সংক্রান্ত উপপাদ্য

সূচনা (Introduction) : আমরা পূর্বেই জেনেছি একটি সরলরেখা একই সমতলে অবস্থিত একটি বৃত্তকে দুই এর অধিক বিন্দুতে ছেদ করতে পারে না । 

চির পাশের চিত্রে AB সরলরেখাটি বৃত্তটিকে P, Q বিন্দুতে ছেদ করেছে । AB এর অবস্থানের সঙ্গে সমান্তরাল করে সরলরেখাটিকে বৃত্তের পরিধির দিকে ক্রমশ সরালে দেখাযায় ছেদ বিন্দু দুটি নিকটবর্তী হয় এবং AB এর অবস্থান যখন CD হয়, তখন ছেদবিন্দু সমাপতিত হয় E বিন্দুতে অর্থাৎ CD সরলরেখাটি বৃত্তটিকে ছুঁয়ে যায় বা স্পর্শ করে । CD কে বৃত্তের স্পর্শক এবং E বিন্দুকে বলে স্পর্শবিন্দু । এরপর দেখা যায় AB এর পরবর্তী অবস্থানে সরলরেখাটি বৃত্তটিকে কোনো বিন্দুতে ছেদ বা স্পর্শ করবে না । 

সার্চ

ডানদিকের চিত্রে একটি সরলরেখা বৃত্তটিকে A ও B বিন্দুতে ছেদ করেছে । A বিন্দুকে স্থির রেখে যদি সরলরেখাটিকে ঘোরানো হয় (চিত্রে ঘড়ির কাঁটার বিপরীতদিকে ঘোরানো হয়েছে) তাহলে দেখা যায় অপর ছেদ বিন্দুটি A বিন্দুর আরো নিকটবর্তী হয় । এভাবে ঘোরানোর ফলে সরলরেখাটির এমন একটি অবস্থান হবে যখন অপর ছেদ বিন্দুটি A বিন্দুর সাথে মিশে যাবে বা দুটি ছেদবিন্দু A বিন্দুতে সমাপ্তিটা হবে, তখন সরলরেখাটি A বিন্দুতে স্পর্শক হবে । 

নীচের চিত্র থেকে স্পর্শক সম্মন্ধে আমাদের আরো পরিষ্কার ধারণা হবে 

সারা

উপরের চিত্র থেকে দেখতে পাওয়া যায় যে AD সরলরেখা একটি বৃত্তকে B ও C বিন্দুতে ছেদ করেছে এবং অপর বৃত্তকে B বিন্দুতে স্পর্শ করেছে । প্রথমক্ষেত্রে AD কে বৃত্তের ছেদক বলে । দ্বিতীয়ক্ষেত্রে AD কে বৃত্তের স্পর্শক ও B বিন্দুকে স্পর্শবিন্দু বলে । AD স্পর্শকের উপরে B বিন্দু ছাড়া অন্য কোনো বিন্দু বৃত্তের উপর অবস্থিত নয় । 

বৃত্তের কোনো বিন্দুতে স্পর্শক ও ঐ স্পর্শবিন্দুগামী ব্যাসার্ধ পরস্পর লম্বভাবে অবস্থিত 

সা মনে করি O কেন্দ্রীয় কোনো বৃত্তের P বিন্দুতে AB স্পর্শক এবং OP, P বিন্দুগামী ব্যাসার্ধ । আমাদের প্রমাণ করতে হবে যে OP এবং AB পরস্পর লম্ব । 

অঙ্কন : AB স্পর্শকের উপর অপর যেকোনো একটি বিন্দু Q নেওয়া হল । O , Q যুক্ত করা হল । 

প্রমাণ : যেহেতু স্পর্শক AB এর উপরে স্পর্শবিন্দু P ব্যাতিত অপর যেকোনো একটি বিন্দু Q বৃত্তের বাইরে অবস্থিত , সুতরাং OQ বৃত্তটিকে একটি বিন্দুতে ছেদ করবে । মনে করি ছেদবিন্দু হল R ।

অতএব OR < OQ (যেহেতু R বিন্দু O , Q এর অন্তর্বর্তী)

আবার OR = OP .(একই বৃত্তের ব্যাসার্ধ)

অতএব OP < OQ 

যেহেতু Q বিন্দু AB এর উপর যেকোনো বিন্দু , তাই O কেন্দ্র থেকে AB এর উপর যত রেখাংশ অঙ্কন করা যায় OP তাদের মধ্যে ক্ষুদ্রতম হবে । 

অতএব OP এবং AB পরস্পর লম্ব । 

অনুসিদ্ধান্ত 

  1. বৃত্তের উপর অবস্থিত কোনো বিন্দুগামী ব্যাসার্ধের উপর ঐ বিন্দুতে অঙ্কিত লন্ব বৃত্তের স্পর্শক হবে । 
  2. বৃত্তের উপর অবস্থিত কোনো বিন্দুতে একটিমাত্র স্পর্শক অঙ্কন করা যায়। ( যেহেতু ঐ বিন্দুতে ঐ বিন্দুগামী ব্যাসার্ধের উপর একটি মাত্র লম্ব অঙ্কন করা যায়)
  3. স্পর্শবিন্দুতে স্পর্শকের উপর অঙ্কিত লম্ব বৃত্তের কেন্দ্রগামী হবে। কারণ একটি সরলরেখার উপর অবস্থিত একটি বিন্দুতে একটিমাত্র লম্ব অঙ্কন করা যায় । 

কয়েকটি প্রয়োগ 

(১) O কেন্দ্রীয় কোনো একটি বৃত্তের AB একটি ব্যাস। A বিন্দুতে বৃত্তের স্পর্শক PAQ . RS জ্যাটি স্পর্শক PAQ এর সমান্তরাল হলে প্রমাণ করো যে , AB , RS এর লম্ব সমদ্বিখণ্ডক । 

চির প্রমাণ : মনে করি AB , RS কে T বিন্দুতে ছেদ করে । 

অতএব PAQ , O কেন্দ্রীয় বৃত্তের A বিন্দুতে স্পর্শক এবং AB ব্যাস , 

অতএব ABPQ

আবার PQ ।। RS এবং AB ভেদক । 

অতএব ABRS

অতএব T , RS এর মধ্যবিন্দু । ( যেহেতু OT কেন্দ্র থেকে জ্যা RS এর উপর লম্ব )

অতএব AB , RS এর লম্ব সমদ্বিখণ্ডক । 

(২) বৃত্তের বহিস্থ কোনো বিন্দু থেকে ওই বৃত্তে দুটি স্পর্শক অঙ্কন করা যায় । 

চির O কেন্দ্রীয় একটি বৃত্তে T একটি বহিস্থ বিন্দু। প্রমাণ করতে হবে যে , T বিন্দু থেকে O কেন্দ্রীয় বৃত্তে দুটি স্পর্শক অঙ্কন করা যায় । 

অঙ্কন : T , O যুক্ত করা হল । TO কে ব্যাস করে একটি বৃত্ত অঙ্কন করা হল । T বিন্দু বৃত্তের বহিস্থ এবং O বিন্দু বৃত্তের অন্তঃস্থ বলে বৃত্তটি O কেন্দ্রীয় বৃত্তকে দুটি বিন্দুতে ছেদ করে । মনে করি ছেদবিন্দু দুটি হল A ও B . TA , TB , OA ও OB যুক্ত করা হল । 

প্রমাণ : OAT এবং OBT এরা প্রত্যেকেই অর্ধবৃত্তস্থ কোণ। 

অতএব OAT=OBT=90

অর্থাৎ TAOA এবং TBOB

অতএব TA ও TB যথাক্রমে O কেন্দ্রীয় বৃত্তের ব্যাসার্ধ OA এবং OB এর উপর লম্ব । 

অতএব TA ও TB O কেন্দ্রীয় বৃত্তে A ও B বিন্দুতে স্পর্শক । 

অতএব প্রমাণিত বৃত্তের বহিস্থ কোনো বিন্দু থেকে ওই বৃত্তে দুটি স্পর্শক অঙ্কন করা যায় । 

বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে যে দুটি স্পর্শক অঙ্কন করা যায় তাদের স্পর্শবিন্দু দুটির সাথে বহিঃস্থ বিন্দুর সংযোগ রেখাংশ দুটি সমান এবং তারা কেন্দ্রে সমান কোণ উৎপন্ন করে । 

সার ধরা যাক কোনো বৃত্তের বহিঃস্থ কোনো P বিন্দু থেকে PA এবং PB দুটি স্পর্শক অঙ্কন করা হল , যাদের স্পর্শ বিন্দু যথাক্রমে A ও B .O , A ; O , B এবং O , P যুক্ত করা হল । ফলে PA ও PB কেন্দ্র যথাক্রমে POA এবং POB কোণ উৎপন্ন করেছে । 

আমাদের প্রমাণ করতে হবে যে (i) PA = PB  (ii) POA=POB

প্রমাণ : PA ও PB স্পর্শক এবং OA এবং OB হল স্পর্শবিন্দুগামী ব্যাসার্ধ । 

অতএব OAPA এবং OBPB 

PAO ও PBO সমকোণী ত্রিভুজদ্বয়ের OA =OB ( একই বৃত্তের ব্যাসার্ধ )

অতিভুজ OP সাধারণ বাহু .

ত্রিভুজ POA  ত্রিভুজ PBO 

অতএব PA = PB ( অনুরূপ বাহু )

এবং POA=POB ( অনুরূপ কোণ )

অনুসিদ্ধান্ত 

1. বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে অংকিত দুটি স্পর্শকের অন্তর্ভুত কোণকে ওই বিন্দু এবং কেন্দ্রের সংযোগ সরলরেখা সমদ্বিখণ্ডিত করে । 

2.বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে অংকিত স্পর্শক দুটির অন্তর্ভুত কোণের অন্তর্দ্বিখণ্ডক কেন্দ্রগামী হবে । 

3.বৃত্তের উপরিস্থ দুটি বিন্দুতে অংকিত স্পর্শক দুটি যদি পরস্পরকে ছেদ করে , তাহলে ছেদ বিন্দু থেকে স্পর্শ বিন্দু পর্যন্ত অঙ্কিত রেখাংশের দৈর্ঘ্য সমান হবে । 

কয়েকটি সংজ্ঞা 

সাধারণ স্পর্শক : একটি সরলরেখা যদি দুটি বৃত্তের প্ৰত্যেককে স্পর্শ করে , তাহলে ওই সরলরেখাটিকে বৃত্ত দুটির সাধারণ স্পর্শক বলে। নীচে সাধারণ স্পর্শকের কতগুলি নমুনা চিত্র দেখানো হল । 

সার

সরল সাধারণ স্পর্শক  : যে সাধারণ স্পর্শকের একই পাশে বৃত্ত দুটি অবস্থিত হয় তাকে সরল সাধারণ স্পর্শক বলে । 

তির্যক সাধারণ স্পর্শক  : যে সাধারণ স্পর্শকের বিপরীত পাশে বৃত্ত দুটি অবস্থিত হয় তাকে তির্যক সাধারণ স্পর্শক বলে । 

যদি দুটি বৃত্ত পরস্পরকে স্পর্শ করে তাহলে স্পর্শ বিন্দুটি কেন্দ্র দুটির সংযোগ সরলরেখার উপরে অবস্থিত হবে । 

সার

ধরা যাক P ও Q কেন্দ্রীয় দুটি বৃত্ত পরস্পরকে A বিন্দুতে স্পর্শ করেছে। প্রমাণ করতে হবে যে P , A ও Q সমরেখ । 

অঙ্কন : P , A ও Q , A যুক্ত করা হল । 

প্রমাণ : যেহেতু বৃত্ত দুটি A বিন্দুতে পরস্পরকে স্পর্শ করেছে। সুতরাং A বিন্দুতে একটি সাধারণ স্পর্শক আছে। মনে করি ST হল সাধারণ স্পর্শক যা দুটি বৃত্তকে A বিডিতে স্পর্শ করেছে । 

অতএব P কেন্দ্রীয় বৃত্তের ST স্পর্শক এবং PA কেন্দ্র বিন্দুগামী ব্যাসার্ধ।  অতএব PAST

আবার Q কেন্দ্রীয় বৃত্তের ST স্পর্শক এবং QA স্পর্শ বিন্দুগামী ব্যাসার্ধ।  অতএব QAST

অতএব PA ও QA একই বিন্দুতে ST এর উপর লম্ব । 

অতএব PA ও QA একই সরলরেখার উপর অবস্থিত , অর্থাৎ P , A , Q বিন্দু তিনটি সমরেখ । 

 

অনুসিদ্ধান্ত :

(১) দুটি বৃত্ত পরস্পরকে স্পর্শ করলে , একটির কেন্দ্র ও স্পর্শবিন্দুগামী সরলরেখা অপর বৃত্তের কেন্দ্র দিয়ে যাবে। 

(২) দুটি বৃত্ত বহিঃস্পর্শ করলে , কেন্দ্র দুটির দূরত্ব ব্যাসার্ধ দুটির দৈঘ্যের সমষ্টি হবে। 

সার

দেখা যাচ্ছে PQ = PA + QA 

(৩)  দুটি বৃত্ত অন্তস্পর্শ করলে , কেন্দ্র দুটির দূরত্ব ব্যাসার্ধ দুটির দৈঘ্যের অন্তরফলের সমান হবে । 

সার

দেখা যাচ্ছে PQ = PA - QA 

কয়েকটি প্রয়োগ 

(১) O কেন্দ্রীয় বৃত্তে AB ব্যসের A ও B বিন্দুতে অঙ্কিত দুটি সমান্তরাল স্পর্শক বৃত্তটির অপর একটি বিন্দু T তে অঙ্কিত স্পর্শকে যথাক্রমে P ও Q বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে POQ=90

প্রমাণ : O কেন্দ্রীয় বৃত্তে A ও T বিন্দুতে অঙ্কিত স্পর্শক দুটি P বিন্দুতে সার ছেদ করে । 

অতএব PO , APT এর অন্তর্দ্বিখণ্ডক । 

অর্থাৎ TPO=12APT

অনুরূপে T ও B বিন্দুতে অঙ্কিত স্পর্শক দুটি Q বিন্দুতে ছেদ করেছে । 

অতএব TQO=12BQT

আবার AP ।। BQ এবং ভেদক PQ 

অতএব 

BQT+APT=1802TQO+2TPO=180TQO+TPO=90

সুতরাং ত্রিভুজ POQ এর অপর কোণটি POQ=90

 

(২) কেন্দ্রীয় বৃত্তের পরিলিখিত চতুর্ভুজ ABCD . প্রমাণ করতে হবে যে AB + CD = BC + DA 

সার ABCD চতুর্ভুজটি O কেন্দ্রীয় বৃত্তে পরিলিখিত। মনে করি AB , BC , CD এবং DA বৃত্তটিকে যথাক্রমে Q , R , S এবং P বিন্দুতে স্পর্শ করেছে । আমাদের প্রমাণ করতে হবে যে AB + CD = BC + DA .

প্রমাণ : O কেন্দ্রীয় বৃত্তের বহিঃস্থ বিন্দু A থাকে AP ও AQ দুটি স্পর্শক। সুতরাং AP = AQ .

অনুরূপে BQ = BR ; CR = CS এবং DS = DP .

অতএব AQ + BQ + CS + DS = AP + BR + CR + DP 

অর্থাৎ , AB + CD = AP + DP + BR + CR = BC + DA 

 

(৩) P ও Q কেন্দ্র বিশিষ্ট দুটি বৃত্ত পরস্পরকে A বিন্দুতে বহিঃস্পর্শ করেছে। বৃত্ত দুটির একটি সরল সাধারণ স্পর্শক দুটি বৃত্তকে যথাক্রমে R এবং S বিন্দুতে স্পর্শ করেছে। প্রমাণ করতে হবে যে 

(i) A বিন্দুতে অঙ্কিত সাধারণ স্পর্শক RS রেখাংশ কে T বিন্দুতে সমদ্বিখণ্ডিত করে । 

(ii) RAS=90

(iii) যদি PT ও QT , AR ও AS কে যথাক্রমে C ও B বিন্দুতে ছেদ করে , তাহলে ABTC একটি আয়তক্ষেত্র হবে । 

সার প্রমাণ : A বিন্দুতে অঙ্কিত স্পর্শক RS কে T বিন্দুতে ছেদ করেছে । 

অতএব T বিন্দু থেকে P কেন্দ্রীয় বৃত্তে দুটি স্পর্শক TR ও TA .

অতএব TR = TA .

অনুরূপভাবে TS = TA . অতএব TR = TS .

এর থেকে বলা যায় যে AT , RS কে সমদ্বিখণ্ডিত করে। 

আবার ত্রিভুজ ATR এর TR = TA  অতএব TAR=TRA

অনুরূপভাবে TAS=TSA

অতএব 

RAS=TAR+TASRAS=TRA+TSARAS=90

আবার PT , RTA এর সমদ্বিখণ্ডক এবং QT , ATS এর সমদ্বিখণ্ডক। 

অতএব PTQT অর্থাৎ PTQ=90

আবার PTRA এবং QTSA

অতএব ACT=ABT=90

সুতরাং প্রমাণিত ABTC একটি আয়তক্ষেত্র । 

 

(৪) দুটি বৃত্ত পরস্পরকে O বিন্দুতে বহিঃস্পর্শ করে। PQ এবং RS দুটি বৃত্তের ব্যাস এবং পরস্পর সমান্তরাল। প্রমাণ করতে হবে যে P , O এবং S সমরেখ । 

সিয়া প্রমাণ : মনে করি বৃত্ত দুটির কেন্দ্র যথাক্রমে A ও B . O বিন্দুতে বৃত্ত দুটি পরস্পরকে বহিঃস্পর্শ করেছে । 

অতএব A , O , B একই সরলরেখায় অবস্থিত হবে । 

ত্রিভুজ PAO এর APO=AOP ( যেহেতু AP = AO একই বৃত্তের ব্যাসার্ধ )

আবার 

APO+AOP+PAO=1802AOP=180PAO

অনুরূপে 2ROB=180RBO

অতএব

2(AOP+ROB)=360(PAO+RBO)2(AOP+ROB)=360180=180AOP+ROB=90

আবার POR=180(POA+ROB)=18090=90

এবং POR+ROS=90+90=180 ( যেহেতু ROS অর্ধবৃত্তস্থ কোণ )

অতএব P , O এবং S সমরেখ । 

*****

Related Items

ত্রিকোণমিতি (Trigonometry)

ত্রিকোণামিতি (Trigonometry)

কোণের পরিমাপ

যেহেতু ত্রিকোণমিতি নামক গণিতের এই বিশেষ শাখা প্রধানত সমকোণী ত্রিভুজের সূক্ষকোণ দুটির পরিপেক্ষিতে বাহুগুলির অনুপাতের উপর প্রতিষ্ঠিত তাই প্রথমেই কোণ সম্পর্কে বিস্তারিত আলোচনার প্রয়োজন ।

লম্ব-বৃত্তাকার চোঙ

লম্ব-বৃত্তাকার চোঙ (Right-circular Cylinder)