দ্বিঘাত সমীকরণ (Quadratic Equation)

Submitted by arpita pramanik on Wed, 02/16/2011 - 15:21

দ্বিঘাত সমীকরণ (Quadratic Equation)

কোনো সমীকরণে অজ্ঞাত রাশির সর্বোচ্চ ঘাত হলে তাকে দ্বিঘাত সমীকরণ বলে । 

যে দ্বিঘাত সমীকরণে অজ্ঞাত রাশির ঘাত কেবলমাত্র দুই এবং একঘাত অজ্ঞাত রাশি অনুপুস্থিত থাকে তাকে বিশুদ্ধ দ্বিঘাত সমীকরণ (Pure Quadratic Equation) বলে । যেমন [tex]a{x^2} + c = 0[/tex] যেখানে [tex]a \ne 0[/tex] একটি বিশুদ্ধ দ্বিঘাত সমীকরণ । 

কিন্তু কোনো দ্বিঘাত সমীকরণে অজ্ঞাত রাশির দুই ঘাত এবং একঘাত উভয়েই উপস্থিত থাকলে তাকে অবিশুদ্ধ দ্বিঘাত সমীকরণ (Adfected Quadratic Equation) বলে । যেমন [tex]a{x^2} + bx + c = 0[/tex] যেখানে [tex]a \ne 0[/tex] একটি অবিশুদ্ধ দ্বিঘাত সমীকরণ । 

দ্বিঘাত সমীকরণ কিভাবে সমাধান করা যায় ?

দ্বিঘাত সমীকরণকে সমাধান করতে হলে প্রদত্ত সমীকরণকে সরল ও পক্ষান্তর করে ডানদিকে শূন্য রেখে সমস্ত পদকে বামদিকে রাখা হয় । তারপর , বামদিকের রাশিমালাকে উৎপাদকে বিশ্লেষণ করে প্রতিটি উৎপাদককে শূন্য ধরে অজ্ঞাত রাশির মান নির্ণয় করা হয় । 

মনে রাখা দরকার, দ্বিঘাত সমীকরণের ক্ষেত্রে অজ্ঞাত রাশির দুটি মান পাওয়া যায় । 

প্রয়োজনীয় পক্ষান্তর এবং সরল করে যদি কোনো দ্বিঘাত সমকরণ কে [tex]a{x^2} = c[/tex] এই আকারে প্রকাশ করা যায়, তবে তার নির্ণেয় সমাধান হবে [tex]x =  \pm \sqrt {\frac{c}{a}} [/tex]

বামদিকের রাশিমালাকে উৎপাদকে বিষশ্লেষণ সম্ভব না হলে শ্রীধর আচার্যের সূত্র ধরে সমাধান করতে হবে ।

শ্রীধর আচার্যের সূত্র

মনে করি একটি দ্বিঘাত সমীকরণ হল [tex]a{x^2} + bx + c = 0[/tex] যেখানে [tex]a \ne 0[/tex]

এর সমাধান হবে [tex]x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}[/tex]

অর্থাৎ বিজদ্বয় হবে [tex]x = \frac{{ - b + \sqrt {{b^2} - 4ac} }}{{2a}}[/tex] এবং [tex]x = \frac{{ - b - \sqrt {{b^2} - 4ac} }}{{2a}}[/tex]

বর্গমূল চিহ্নের ভিতরের অংশ [tex]{{b^2} - 4ac}[/tex] কে নিরূপক বলে । 

******

Related Items

সহ-সমীকরণ

 সহ-সমীকরণ : যখন দুটি সমীকরণ যুগ্মভাবে কোনো সমস্যার সমাধানকে বহন করে তখন ওই সমীকরণদ্বয়কে বলে সহসমীকরণ । সহসমীকরণের একটিকে অপরটি থেকে বিচ্ছিন্ন করলে আলাদা আলাদা ভাবে কোনো একটি সমীকরণকে সমাধান করা সম্ভব  নয় । 

গ.সা.গু. ও ল.সা.গু.(H.C.F and L.C.M)

গরিষ্ঠ সাধারণ গুণনীয়ক ও লঘিষ্ঠ সাধারণ গুণিতক বা গ.সা.গু. ও ল.সা.গু. (Highest Common Factor and Lowest Common Multiple or H.C.F and L.C.M)

                                 গরিষ্ঠ সাধারণ গুণনীয়ক বা গ.সা.গু. (Highest Common Factor or H.C.F)

বীজগণিত (Algebra)

বীজগণিত

পাটিগনিত (Arithmetic)

প্রথম অধ্যায়ঃ মিশ্রণ, দ্বিতীয় অধ্যায় : লাভ-ক্ষতি , তৃতীয় অধ্যায় : সুদকষা , চতুর্থ অধ্যায় : সমাহার বৃদ্ধি