করণী (surds)

Submitted by arpita pramanik on Wed, 02/16/2011 - 21:31

করণী (surds):-

মূলদ সংখ্যা :  যদি কোনো সংখ্যা কে p/q (p,q অখণ্ড সংখ্যা, q ≠ 0) আকারে প্রকাশ করা যায় তাহলে ঐ সংখ্যা কে মূলদ সংখ্যা (rational number) বা প্রমেয় রাশি (commensurable quantity) বলে ।

উদাহরণ:- [tex]2 \over 5[/tex], 0, 16, √25 ইত্যাদি ।
(শূন্য সংখ্যাটি অবশ্যই মূলদ সংখ্যা)

অমূলদ সংখ্যা:- যে সব সংখ্যা কে p/q আকারে প্রকাশ করা যায় না তাদের কে অমূলদ সংখ্যা (irrational number) বা অমেয় রাশি (incommensurable quantity) বলে । উদাহরণ:- √2, ∛5 ইত্যাদি ।

করণী - একটি ধনাত্মক রাশির কোনো মূল সঠিক ভাবে নির্ণয় করা সম্ভব না হলে সেই মূলক কে করণী বলে । উদাহরণ: √2 , ∛5  ইত্যাদি ।

করণীর সংজ্ঞা থেকে বোঝা যায় যে করণীও অমেয় রাশি । কিন্তু √25, [tex]\sqrt[2]{7}[/tex] ইত্যাদি করণীর অকারে প্রকাশিত হলে ও এরা প্রমেয় রাশি ।

√ চিহ্ন দ্বারা করণী প্রকাশ করা হয় এই চিহ্নটি কে করণী চিহ্ন (radical sign) বলে ।

করণীর ক্রম (Order of Surds) :  কোনো করণীর মূল সূচক সংখ্যাকে ঐ করণীর ক্রম (order) বলা হয় ।
উদাহরণ:- √2, [tex]\sqrt[7]{7}[/tex], [tex]\sqrt[n]{9}[/tex] ইত্যাদি, এখানে √2 হল দ্বিতীয় ক্রমের করণী । [tex]\sqrt[7]{7}[/tex] হল সপ্তম ক্রমের করণী । [tex]\sqrt[n]{9}[/tex] হল n তম ক্রমের করণী ।


 

 

Related Items

করণীর কার্যপ্রণালী (Operations with Surds)

করণীর যোগফল ও বিয়োগফল(Addition and subtraction of Surds): করণীর যোগফল বা বিয়োগফল নির্ণয় করতে হলে নিম্নলিখিত পদ্ধতি অবলম্বন করতে হবে ।

বিভিন্ন প্রকার করণী (Different types of Surds)

সমমূলীয় ও অসমমূলীয় করণী (Equiradical and unequiradical surds): একাধিক করণী ক্রম সমান হলে তাদের সমমূলীয় করণী বলে ।

দ্বিঘাত করণীর কয়েকটি ধর্ম (Properties of Quadratic Surds)

1. দুটি অসদৃশ দ্বিঘাত করণীর গুণফল মূলদ রাশি হতে পারে না, 2. একটি সরল দ্বিঘাত করণী কখনও একটি মূলদ রাশি ও একটি দ্বিঘাত করণীর যোগফল বা অন্তরফল সমান হতে পারে না ।, 3. একটি সরল দ্বিঘাত করণী কখনও দুটি অসদৃশ সরল দ্বিঘাত করণীর যোগফল বা অন্তরফলের সমান হতে পারে না ।

করণীর সংক্ষিপ্তকরণ (Summary of Surds)

করণীর সংক্ষিপ্তকরণ (Summary of Surds) 1. একটি ধনাত্মক রাশি কোনো মূল সঠিকভাবে নির্ণয় করা সম্ভব না হলে সেই মূলকে করণী বলে । 2. কোনো করণীর মূল সূচক সংখ্যা n হলে তাকে nতম ক্রমের করণী বলে ।

সূচক সংক্রান্ত সমীকরণ ও অভেদ

সূচক সংক্রান্ত সমীকরণ ও অভেদ গুলির আলোচনা [Equations and Identities Involving Indices]