Solution to Problem 0201 | Integration

Submitted by Anonymous (not verified) on Sat, 12/08/2012 - 18:29

Problem 201

 

Evaluate [tex]\int\limits_0^{\pi /2} {{{\cos x} \over {\sin x + \cos x}}dx} [/tex]

 

 

 

Solution:

 

let [tex]I = \int\limits_0^{\pi /2} {{{\cos x} \over {\sin x + \cos x}}dx} [/tex]

 

=[tex]\int\limits_0^{\pi /2} {{{\cos (\pi /2 - x)} \over {\sin (\pi /2 - x) + \cos (\pi /2 - x)}}dx} [/tex]

 

=[tex]\int\limits_0^{\pi /2} {{{\sin x} \over {\cos x + \sin x}}dx} [/tex]

 

So [tex]\int\limits_0^{\pi /2} {{{\sin x} \over {\cos x + \sin x}}dx}  = I[/tex]

 

Tharefore

2I=I+I

=[tex]\int\limits_0^{\pi /2} {{{\sin x} \over {\cos x + \sin x}}dx} [/tex] +[tex]\int\limits_0^{\pi /2} {{{\cos x} \over {\sin x + \cos x}}dx} [/tex]

=[tex]\int\limits_0^{\pi /2} {{{\sin x + \cos x} \over {\cos x + \sin x}}dx} [/tex]

=[tex]\int\limits_0^{\pi /2} {dx} [/tex]

=[tex]{\left[x\right]}\nolimits_0^{\pi /2}={\pi \over 2}[/tex]

 

[tex]\therefore[/tex] I=[tex]{\pi \over 4}[/tex]

 

 

 

Comments

Related Items

Engineering Mathematics

1. Algebra, Vectors and Geometry, 2. Calculus, 3. Series, 4. Differential Equations, 5. Complex Analysis, 6. Transforms, 7. Numerical Techniques ...