Problem 201
Evaluate π/2∫0cosxsinx+cosxdx
Solution:
let I=π/2∫0cosxsinx+cosxdx
=π/2∫0cos(π/2−x)sin(π/2−x)+cos(π/2−x)dx
=π/2∫0sinxcosx+sinxdx
So π/2∫0sinxcosx+sinxdx=I
Tharefore
2I=I+I
=π/2∫0sinxcosx+sinxdx +π/2∫0cosxsinx+cosxdx
=π/2∫0sinx+cosxcosx+sinxdx
=π/2∫0dx
={\left[x\right]}\nolimits_0^{\pi /2}={\pi \over 2}
∴ I=π4