GATE Syllabus for Physics (PH)

Submitted by tushar pramanick on Sun, 07/21/2013 - 11:11

Graduate Aptitude Test in Engineering,2013

Syllabus for Physics (PH)

Mathematical Physics: Linear vector space; matrices; vector calculus; linear differential equations; elements of complex analysis; Laplace transforms, Fourier analysis, elementary ideas about tensors.

Classical Mechanics: Conservation laws; central forces, Kepler problem and planetary motion; collisions and scattering in laboratory and centre of mass frames; mechanics of system of particles; rigid body dynamics; moment of inertia tensor; noninertial frames and pseudo forces; variational principle; Lagrange’s and Hamilton’s formalisms; equation of motion, cyclic coordinates, Poisson bracket; periodic motion, small oscillations, normal modes; special theory of relativity – Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Electromagnetic Theory: Solution of electrostatic and magnetostatic problems includingboundary value problems;dielectrics andconductors; Biot-Savart’s and Ampere’s laws; Faraday’s law; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization. Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Quantum Mechanics: Physical basis of quantum mechanics; uncertainty principle; Schrodinger equation; one, two and three dimensional potential problems; particle in a box, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

Thermodynamics and Statistical Physics: Laws of thermodynamics; macrostates and microstates; phase space; probability ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose-Einstein condensation; first and second order phase transitions, critical point.

Atomic and Molecular Physics: Spectra of one- and many-electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; X-ray spectra; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck-Condon principle; Raman effect; NMR and ESR; lasers.

Solid State Physics: Elements of crystallography; diffraction methods for structure determination; bonding in solids; elastic properties of solids; defects in crystals; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids; metals, semiconductors and insulators; transport properties; optical, dielectric and magnetic properties of solids; elements of superconductivity.

Nuclear and Particle Physics: Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model – semi-empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; Alpha decay, Beta-decay, electromagnetic transitions in nuclei;Rutherford scattering,nuclear reactions, conservation laws; fission and fusion;particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

Electronics: Network analysis; semiconductor devices; Bipolar Junction Transistors, Field Effect Transistors, amplifier and oscillator circuits; operational amplifier, negative feedback circuits ,active filters and oscillators; rectifier circuits, regulated power supplies; basic digital logic circuits, sequential circuits, flip-flops, counters, registers, A/D and D/A conversion.

Comments

Related Items

Solved Problem on Beams

Beam PQRS has internal hinges in spans PQ and RS as shown. The beammay be subjected to a moving distributed vertical load of maximum intensity 4 kN/m of any length anywhere on the beam. The maximum absolute value of the shear force...

Solved Problem on Beams

A uniform beam weighing 1800 N is supported at E and F by cable ABCD. Determine the tension ( in N) in segment AB of this cable ( correct to 1-decimal place).

Solved Problem on Beams

A uniform beam (EI=constant) PQ in the form of a quarter-circle of radius R is fixed at end P and free at the end Q, where a load W is applied as shown. The vertical downward displacement, δp, at the

Solved Problem on Bending moment and shear force

All members in the rigid-jointed frame shown are prismatic and have the same flexural stiffness EI. Find the magnitude of the bending moment at Q (in kNm) due to the given loading.

Solved Problem on Trusses

The pin-jointed 2-D truss is loaded with a horizontal force of 15 kN at joint S and another 15 kN vertical force at joint U, as shown.Find the force in member RS (in kN ) ...