Principle of Transformer
[tex]\Phi={\Phi _m}\sin \omega t[/tex]
[tex]e = - \partial \frac{d}{{dt}}(\Phi T) = - T\frac{{d\Phi }}{{dt}}({\Phi _m}\sin \omega t) = - T\omega {\Phi _m}\cos \omega t[/tex]
[tex] = T\omega {\Phi _m}\sin (\omega t - \frac{\pi }{2})[/tex]
[tex]e = {E_m}\sin (\omega t - \frac{\pi }{2})[/tex]
[tex]{E_m} = T\omega {\Phi _m}[/tex]
[tex]{E_{rms}} = E = \frac{{{E_m}}}{{\sqrt 2 }}[/tex]
[tex]E = \frac{{T\omega {\Phi _m}}}{{\sqrt 2 }} = \frac{{T(2\pi f){\Phi _m}}}{{\sqrt 2 }}[/tex]
[tex]E = 4.44{\Phi _m}fT[/tex]
[tex]{E_1} = 4.44{\Phi _m}f{T_1}[/tex]
[tex]{E_2} = 4.44{\Phi _m}f{T_2}[/tex]
[tex]{B_m} = \frac{{{\Phi _m}}}{A}[/tex]
[tex]\frac{{{E_1}}}{{{T_1}}} = 4.44{\Phi _m}f[/tex]
[tex]\frac{{{E_2}}}{{{T_2}}} = 4.44{\Phi _m}f[/tex]
[tex]\frac{{{E_1}}}{{{T_1}}} = \frac{{{E_2}}}{{{T_2}}}[/tex]
[tex]\frac{{{E_1}}}{{{E_2}}} = \frac{{{T_1}}}{{{T_2}}}[/tex]
[tex]a = \frac{{{E_1}}}{{{E_2}}} = \frac{{{T_1}}}{{{T_2}}}[/tex]
[tex]\frac{{{V_1}}}{{{V_2}}} = \frac{{{T_1}}}{{{T_2}}} = a[/tex]
[tex]\Phi = {\Phi _M}\sin \omega t[/tex]
[tex]{e_1} = {E_{1m}}\sin (\omega t - \frac{\pi }{2})[/tex]
[tex]{e_2} = {E_{2m}}\sin (\omega t - \frac{\pi }{2})[/tex]
- 20 views