Problem 0002
Prove that I=π/2∫0√secx√cosecx+√secxdx=π4
Answer:
I=π/2∫0√secx√cosecx+√secxdx....... (1)
or I=π/2∫0√sec(π/2−x)√cosec(π/2−x)+√sec(π/2−x)dx
or I=π/2∫0√cosecx√secx+√cosecxdx ....... (2)
By (1) + (2) we get
2I=π/2∫0dx=π2
There fore I=π4 ....(Proved)