Solution To Problem 0002 | Higher Secondary Mathematics

Submitted by pradipta pramanik on Fri, 07/01/2011 - 14:02

Problem 0002

 

Prove that [tex]I = \int\limits_0^{\pi /2} {{{\sqrt {\sec x} } \over {\sqrt {\cos ecx  }+ \sqrt {\sec x} }}} dx = {\pi  \over 4}[/tex]

 

 

Answer:

 

[tex]I = \int\limits_0^{\pi /2} {{{\sqrt {\sec x} } \over {\sqrt {\cos ec x }+ \sqrt {\sec x} }}} dx[/tex]....... (1)

 

or [tex]I = \int\limits_0^{\pi /2} {{{\sqrt {\sec (\pi /2 - x)} } \over {\sqrt {\cos ec(\pi /2 - x)}  + \sqrt {\sec (\pi /2 - x} )}}} dx[/tex]

 

or [tex]I = \int\limits_0^{\pi /2} {{{\sqrt {\cos ecx} } \over {\sqrt {\sec x + } \sqrt {\cos ecx} }}} dx[/tex] ....... (2)

 

By (1) + (2) we get

 

[tex]2I = \int\limits_0^{\pi /2} {dx = {\pi  \over 2}}[/tex]

 

There fore [tex]I = {\pi  \over 4}[/tex]       ....(Proved)

 

 

 

 

 

 

Tags

Comments

Related Items