Solution To Problem 0002 | Higher Secondary Mathematics

Submitted by pradipta pramanik on Fri, 07/01/2011 - 14:02

Problem 0002

 

Prove that I=π/20secxcosecx+secxdx=π4

 

 

Answer:

 

I=π/20secxcosecx+secxdx....... (1)

 

or I=π/20sec(π/2x)cosec(π/2x)+sec(π/2x)dx

 

or I=π/20cosecxsecx+cosecxdx ....... (2)

 

By (1) + (2) we get

 

2I=π/20dx=π2

 

There fore I=π4       ....(Proved)

 

 

 

 

 

 

Tags

Comments

Related Items

WBJEE 2011 Seat Status on 31.07.2011 Counselling upto GEN 43200 rank

JEM Seat Allotment status of 2011
Category : GEN
Last Updated: 31/07/2011 , 18:29:44

 

WBJEE 2011 Seat Status on 27.07.2011 Counselling upto GEN 22400 rank

JEM Seat Allotment status of 2011
Category : GEN
Last Updated: 27/07/2011 , 18:42:21

 

WBJEE 2011 Seat Status on 24.07.2011 Counselling upto GEN 10400 rank

Counselling upto GEN 10400

JEM Seat Allotment status of 2011
Category : GEN
Last Updated: 24/07/2011 , 18:49:04

 

WBJEE 2011 Seat Status on 26.07.2011 Counselling upto GEN 18400 rank

JEM Seat Allotment status of 2011
Category : GEN
Last Updated: 26/07/2011 , 18:35:49

 

WBJEE 2011 Seat Status on 22.07.2011 Counselling upto GEN 3200 rank

JEM Seat Allotment status of 2011
Category : GEN
Last Updated: 22/07/2011 , 19:42:27

 

Status after Counselling of Rank:-GEN-1 to GEN-3200