অবকলনবিদ্যা

Submitted by arpita pramanik on Thu, 02/17/2011 - 14:08

অবকলনবিদ্যা

Differentiation of Algebraic Functions

1. [tex]\dfrac{d}{dx}(c) = 0[/tex]

2. [tex]\dfrac{d}{dx}(x) = 1[/tex]

3. [tex]\dfrac{d}{dx}(u) = \dfrac{du}{dx}[/tex]

4. [tex]\dfrac{d}{dx}(cu) = c ~ \dfrac{du}{dx}[/tex]

5. [tex]\dfrac{d}{dx}(u + v) = \dfrac{du}{dx} + \dfrac{dv}{dx}[/tex]

6. [tex]\dfrac{d}{dx}(uv) = u ~ \dfrac{dv}{dx} + v ~ \dfrac{du}{dx}[/tex]

7. [tex]\dfrac{d}{dx}(u^n) = nu^{n - 1} ~ \dfrac{du}{dx}[/tex]

8. [tex]\dfrac{d}{dx}(\sqrt{u}) = \dfrac{\dfrac{du}{dx}}{2\sqrt{u}}[/tex]

9. [tex]\dfrac{d}{dx}\left( \dfrac{u}{v} \right) = \dfrac{v ~ \dfrac{du}{dx} - u ~ \dfrac{dv}{dx}}{v^2}[/tex]

10. [tex]\dfrac{d}{dx}\left( \dfrac{c}{v} \right) = \dfrac{-c ~ \dfrac{dv}{dx}}{v^2}[/tex]

11. [tex]\dfrac{dy}{dx} = \dfrac{1}{\dfrac{dx}{dy}} = \dfrac{dy}{du} \cdot \dfrac{du}{dx} = \dfrac{\dfrac{dy}{du}}{\dfrac{dx}{du}}[/tex]

 

Differentiation of Logarithmic and Exponential Functions

1. [tex]\dfrac{d}{dx}(\log_a u) = \dfrac{\dfrac{du}{dx}}{u \ln a}[/tex]

2. [tex]\dfrac{d}{dx}(\log u) = \dfrac{\log e ~ \dfrac{du}{dx}}{u} = \dfrac{\dfrac{du}{dx}}{u \ln 10}[/tex]

3. [tex]\dfrac{d}{dx}(\ln u) = \dfrac{\dfrac{du}{dx}}{u}[/tex]

4. [tex]\dfrac{d}{dx}(a^u) = a^u \ln a ~ \dfrac{du}{dx}[/tex]

5. [tex]\dfrac{d}{dx}(e^u) = e^u \dfrac{du}{dx}[/tex]

6. [tex]\dfrac{d}{dx}(u^v) = vu^{v - 1} ~ \dfrac{du}{dx} + u^v \, \ln u ~ \dfrac{dv}{dx}[/tex]

 

Differentiation of Trigonometric Functions

1. [tex]\dfrac{d}{dx}(\sin u) = \cos u ~ \dfrac{du}{dx}[/tex]

2. [tex]\dfrac{d}{dx}(\cos u) = -\sin u ~ \dfrac{du}{dx}[/tex]

3. [tex]\dfrac{d}{dx}(\tan u) = \sec^2 u ~ \dfrac{du}{dx}[/tex]

4. [tex]\dfrac{d}{dx}(\cot u) = -\csc^2 u ~ \dfrac{du}{dx}[/tex]

5. [tex]\dfrac{d}{dx}(\sec u) = \sec u \tan u ~ \dfrac{du}{dx}[/tex]

6. [tex]\dfrac{d}{dx}(\csc u) = -\csc u \cot u ~ \dfrac{du}{dx}[/tex]

 

Differentiation of Inverse Trigonometric Functions

1. [tex]\dfrac{d}{dx}(\arcsin u) = \dfrac{\dfrac{du}{dx}}{\sqrt{1 - u^2}}[/tex]

2. [tex]\dfrac{d}{dx}(\arccos u) = \dfrac{- ~ \dfrac{du}{dx}}{\sqrt{1 - u^2}}[/tex]

3. [tex]\dfrac{d}{dx}(\arctan u) = \dfrac{\dfrac{du}{dx}}{1 + u^2}[/tex]

4. [tex]\dfrac{d}{dx}({\rm arccot} ~ u) = \dfrac{- ~ \dfrac{du}{dx}}{1 + u^2}[/tex]

5. [tex]\dfrac{d}{dx}({\rm arcsec} ~ u) = \dfrac{\dfrac{du}{dx}}{u\sqrt{u^2 - 1}}[/tex]

6. [tex]\dfrac{d}{dx}({\rm arccsc} ~ u) = \dfrac{- ~ \dfrac{du}{dx}}{u\sqrt{u^2 - 1}}[/tex]

 

Differentiation of Hyperbolic Functions

1. [tex]\dfrac{d}{dx}(\sinh \, u) = \cosh \, u ~ \dfrac{du}{dx}[/tex]

2. [tex]\dfrac{d}{dx}(\cosh \, u) = \sinh \, u ~ \dfrac{du}{dx}[/tex]

3. [tex]\dfrac{d}{dx}(\tanh \, u) = \text{sech}^2 \, u ~ \dfrac{du}{dx}[/tex]

4. [tex]\dfrac{d}{dx}(\coth \, u) = -\text{csch}^2 \, u ~ \dfrac{du}{dx}[/tex]

5. [tex]\dfrac{d}{dx}({\rm sech} \, u) = -\text{sech} \, u \tanh u ~ \dfrac{du}{dx}[/tex]

6. [tex]\dfrac{d}{dx}({\rm csch} \, u) = -\text{csch} \, u \coth u ~ \dfrac{du}{dx}[/tex]

 

Differentiation of Inverse Hyperbolic Functions

1. [tex]\dfrac{d}{dx}({\rm arcsinh} ~ u) = \dfrac{\dfrac{du}{dx}}{\sqrt{u^2 + 1}}[/tex]

2. [tex]\dfrac{d}{dx}({\rm arccosh} ~ u) = \dfrac{\dfrac{du}{dx}}{\sqrt{u^2 - 1}}[/tex]

3. [tex]\dfrac{d}{dx}({\rm arctanh} ~ u) = \dfrac{\dfrac{du}{dx}}{1 - u^2}[/tex]

4. [tex]\dfrac{d}{dx}({\rm arccoth} ~ u) = \dfrac{\dfrac{du}{dx}}{1 - u^2}[/tex]

5. [tex]\dfrac{d}{dx}({\rm arcsech} ~ u) = \dfrac{- ~ \dfrac{du}{dx}}{u\sqrt{1 - u^2}}[/tex]

5. [tex]\dfrac{d}{dx}({\rm arccsch} ~ u) = \dfrac{- ~ \dfrac{du}{dx}}{u\sqrt{1 + u^2}}[/tex]

Related Items

দ্বিতীয় অধ্যায়ঃ দ্বিতীয় ক্রমের অন্তরকলজ

দ্বিতীয় অধ্যায়ঃ দ্বিতীয় ক্রমের অন্তরকলজ

প্রথম অধ্যায়ঃ অবকলন বা অন্তরকলন

প্রথম অধ্যায়ঃ অবকলন বা অন্তরকলন

তৃতীয় অধ্যায়ঃ পরাবৃত্ত

তৃতীয় অধ্যায়ঃ পরাবৃত্ত

দ্বিতীয় অধ্যায়ঃ উপবৃত্ত

দ্বিতীয় অধ্যায়ঃ উপবৃত্ত

 

প্রথম অধ্যায়ঃ অধিবৃত্ত

প্রথম অধ্যায়ঃ অধিবৃত্ত

সংক্ষিপ্তকরণ -[ Summarisation ]

 

(1) নিম্নলিখিত প্রতিক্ষেত্রে a = অধিবৃত্তের শীর্ষ থেকে নাভির দুরত্ব নির্দেশ করে ।

(i) অধিবৃত্তের সমীকরণ [tex]{y^2} = 4ax[/tex] হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),