প্রথম অধ্যায়ঃ অধিবৃত্ত

Submitted by arpita pramanik on Thu, 02/17/2011 - 14:33

প্রথম অধ্যায়ঃ অধিবৃত্ত

সংক্ষিপ্তকরণ -[ Summarisation ]

 

(1) নিম্নলিখিত প্রতিক্ষেত্রে a = অধিবৃত্তের শীর্ষ থেকে নাভির দুরত্ব নির্দেশ করে ।

(i) অধিবৃত্তের সমীকরণ y2=4ax হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),

- অক্ষ হবে ধনাত্বক x-অক্ষ,

- নাভির স্থানাঙ্ক হবে (a,0) ,

- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,

- নিয়ামকের সমীকরণ হবে x+a = 0 ।

 

(ii) অধিবৃত্তের সমীকরণ y2=4ax হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),

- অক্ষ হবে ঋণাত্মক x-অক্ষ ,

- নাভির স্থানাঙ্ক হবে ( - a,0) ,

- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,

- নিয়ামকের সমীকরণ হবে x - a = 0 ।

 

(iii) অধিবৃত্তের সমীকরণ x2=4ay হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),

- অক্ষ  হবে ধনাত্বক y-অক্ষ ,

- নাভির স্থানাঙ্ক হবে (0,a) ,

- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,

- নিয়ামকের সমীকরণ হবে y+a = 0 ।

 

(iv) অধিবৃত্তের সমীকরণ x2=4ay হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),

- অক্ষ  হবে ঋণাত্মক y-অক্ষ ,

- নাভির স্থানাঙ্ক হবে ( 0,- a ) ,

- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,

- নিয়ামকের সমীকরণ হবে y - a = 0 ।

 

(v) অধিবৃত্তের সমীকরণ (yβ)2=4a(xa) হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (a,β),

- অক্ষ হবে x- অক্ষের সমান্তরাল ,

- নাভির স্থানাঙ্ক হবে ((a+a,β)),

- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,

- নিয়ামকের সমীকরণ হবে x + a = a ।

 

(vi) অধিবৃত্তের সমীকরণ (xa)2=4a(yβ) হলে

- শীর্ষবিন্দুর স্থানাঙ্ক হবে (a,β),

- অক্ষ হবে y- অক্ষের সমান্তরাল ,

- নাভির স্থানাঙ্ক হবে ((a,a+β)),

- নাভিলম্বের দৈর্ঘ্য হবে 4a একক,

- নিয়ামকের সমীকরণ হবে y+a=β

 

(2) x=ay2+by+c(a0) একটি অধিবৃত্তের সমীকরণকে প্রকাশ করে যার অক্ষ x-অক্ষের সমান্তরাল ।

 

(3) y=px2+qx+r(p0)  একটি  অধিবৃত্তের সমীকরণকে প্রকাশ করে যার অক্ষ y-অক্ষের সমান্তরাল ।

 

(4) P(x1,y1) বিন্দু  y2=4ax  অধিবৃত্তের বাইরে , ওপরে অথবা ভিতরে অবস্থিত হবে যদি (y214ax1) -এর মান ধনাত্বক, শূন্য এবং ঋণাত্মক হয় ।

 

(5)  y2=4ax অধিবৃত্তের ওপর যে কোনো বিন্দু P -এর স্থানাঙ্ক (at2,2at) আকারে লেখা যায় এবং একে P বিন্দুর প্যারামেট্রিক স্থানাঙ্ক বলা হয় ; x=at2 ও  y=2at আকারকে y2=4ax অধিবৃত্তের সমীকরণের প্যারামেট্রিক আকার বলা হয় ;এখানে t -কে প্যারামিটার বলে ।

 

 

Related Items

ঘূর্ণন, টর্ক ও কৌণিক ভরবেগ

কনার ঘূর্ণন বা আবর্ত গতি, কৌণিক সরণ, কৌণিক বেগ, কৌণিক ত্বরণ, স্মৃতি বিজ্ঞান সংক্রান্ত আবর্তন গতির সমীকরণ, বলের ভ্রামক, দ্বন্দ্ব বা যুগ্ম বল , টর্ক এর সংজ্ঞা,

বেঞ্জিনসঞ্জাত যৌগসমূহ

phenol, toluene, and aniline. Also naphthalene and anthracene.