প্রথম অধ্যায়ঃ অধিবৃত্ত
সংক্ষিপ্তকরণ -[ Summarisation ]
(1) নিম্নলিখিত প্রতিক্ষেত্রে a = অধিবৃত্তের শীর্ষ থেকে নাভির দুরত্ব নির্দেশ করে ।
(i) অধিবৃত্তের সমীকরণ y2=4ax হলে
- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),
- অক্ষ হবে ধনাত্বক x-অক্ষ,
- নাভির স্থানাঙ্ক হবে (a,0) ,
- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,
- নিয়ামকের সমীকরণ হবে x+a = 0 ।
(ii) অধিবৃত্তের সমীকরণ y2=−4ax হলে
- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),
- অক্ষ হবে ঋণাত্মক x-অক্ষ ,
- নাভির স্থানাঙ্ক হবে ( - a,0) ,
- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,
- নিয়ামকের সমীকরণ হবে x - a = 0 ।
(iii) অধিবৃত্তের সমীকরণ x2=4ay হলে
- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),
- অক্ষ হবে ধনাত্বক y-অক্ষ ,
- নাভির স্থানাঙ্ক হবে (0,a) ,
- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,
- নিয়ামকের সমীকরণ হবে y+a = 0 ।
(iv) অধিবৃত্তের সমীকরণ x2=−4ay হলে
- শীর্ষবিন্দুর স্থানাঙ্ক হবে (0,0),
- অক্ষ হবে ঋণাত্মক y-অক্ষ ,
- নাভির স্থানাঙ্ক হবে ( 0,- a ) ,
- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,
- নিয়ামকের সমীকরণ হবে y - a = 0 ।
(v) অধিবৃত্তের সমীকরণ (y−β)2=4a(x−a) হলে
- শীর্ষবিন্দুর স্থানাঙ্ক হবে (a,β),
- অক্ষ হবে x- অক্ষের সমান্তরাল ,
- নাভির স্থানাঙ্ক হবে ((a+a,β)),
- নাভিলম্বের দৈর্ঘ্য হবে 4a একক ,
- নিয়ামকের সমীকরণ হবে x + a = a ।
(vi) অধিবৃত্তের সমীকরণ (x−a)2=4a(y−β) হলে
- শীর্ষবিন্দুর স্থানাঙ্ক হবে (a,β),
- অক্ষ হবে y- অক্ষের সমান্তরাল ,
- নাভির স্থানাঙ্ক হবে ((a,a+β)),
- নাভিলম্বের দৈর্ঘ্য হবে 4a একক,
- নিয়ামকের সমীকরণ হবে y+a=β ।
(2) x=ay2+by+c(a≠0) একটি অধিবৃত্তের সমীকরণকে প্রকাশ করে যার অক্ষ x-অক্ষের সমান্তরাল ।
(3) y=px2+qx+r(p≠0) একটি অধিবৃত্তের সমীকরণকে প্রকাশ করে যার অক্ষ y-অক্ষের সমান্তরাল ।
(4) P(x1,y1) বিন্দু y2=4ax অধিবৃত্তের বাইরে , ওপরে অথবা ভিতরে অবস্থিত হবে যদি (y21−4ax1) -এর মান ধনাত্বক, শূন্য এবং ঋণাত্মক হয় ।
(5) y2=4ax অধিবৃত্তের ওপর যে কোনো বিন্দু P -এর স্থানাঙ্ক (at2,2at) আকারে লেখা যায় এবং একে P বিন্দুর প্যারামেট্রিক স্থানাঙ্ক বলা হয় ; x=at2 ও y=2at আকারকে y2=4ax অধিবৃত্তের সমীকরণের প্যারামেট্রিক আকার বলা হয় ;এখানে t -কে প্যারামিটার বলে ।
- 5260 views