দ্বিঘাত করণীর কয়েকটি ধর্ম (Properties of Quadratic Surds)

Submitted by arpita pramanik on Thu, 08/27/2020 - 19:17

দ্বিঘাত করণীর কয়েকটি ধর্ম (Some Properties of Quadratic Surds):-

1.  দুটি অসদৃশ দ্বিঘাত করণীর গুণফল মূলদ রাশি হতে পারে না

মনে করি  √(x ), √y দুটি অসদৃশ দ্বিঘাত করণী ।
আমাদের এখন প্রমাণ করতে হবে √(x) × √y মূলদ রাশি হবে না ।
মনে করি √(x) × √y = m হল মূলদ রাশি ।
সুতরাং √y = m / √x = (m × √x) / (√x × √x) = m / x √x
√y = (মূলদ রাশি) × √x [যেহেতু  m/x হল মূলদ রাশি]
 অতএব √(x ), √y দুটি করণী সদৃশ যা কল্পনাবিরোধী ।
সুতরাং √(x ) × √y এটি কখনও মূলদ রাশি হতে পারেনা ।
অতএব প্রমাণিত যে দুটি অসদৃশ দ্বিঘাত করণীর গুনফল মূলদ রাশি হবে না ।

 

2.  একটি সরল দ্বিঘাত করণী কখনও একটি মূলদ রাশি ও একটি  দ্বিঘাত করণীর যোগফল বা অন্তরফল সমান হতে পারে না ।

মনে করি √(x) হল একটি সরল দ্বিঘাত করণী ।
ধরি   
যেখানে a হল একটি মূলদ রাশি ও  √b হল একটি দ্বিঘাত করণী ।
   
দেখা যাছে √b হল মূলদ সংখ্যা যা আমাদের কল্পনাবিরোধী ।
অতএব প্রমাণিত একটি সরল দ্বিঘাত করণী কখনও একটি মূলদ রাশি ও একটি দ্বিঘাত করণীর যোগফলের সমান হতে পারে না ।
অনুরূপে প্রমাণ করা যায় একটি সরল দ্বিঘাত করণী কখনও একটি মূলদ রাশি ও একটি দ্বিঘাত করণীর অন্তরফলের সমান হতে পারে না ।

 

3.  একটি সরল দ্বিঘাত করণী কখনও দুটি অসদৃশ সরল দ্বিঘাত করণীর যোগফল বা অন্তরফলের সমান হতে পারে না ।

মনে করি √(x) হল একটি সরল দ্বিঘাত করণী ।
ধরি [tex]\sqrt x = \sqrt a + \sqrt b [/tex]
যেখানে √(a), √(b) হল দুটি অসদৃশ সরল দ্বিঘাত করণী ।
যেহেতু √(a), √(b) হল দুটি অসদৃশ সরল দ্বিঘাত করণী । তাই √(ab) ও করণী হবে । কিন্তু দেখা যাছে √(ab) একটি মূলদ সংখ্যা যা কল্পনাবিরোধী । অতএব প্রমাণিত একটি সরল দ্বিঘাত করণী কখনও দুটি অসদৃশ সরল দ্বিঘাত করণীর যোগফলের সমান হতে পারে না । অনুরূপে প্রমাণ করা যায় একটি সরল দ্বিঘাত করণী কখনও দুটি অসদৃশ সরল দ্বিঘাত করণীর অন্তরফলের সমান হতে পারে না ।

 

4. a ও x উভয়েই মূলদ রাশি, √(b)  ও √y  উভয়েই করণী এবং a + √b = x + √y হলে a = x ও b = y হবে ।

মনে করি a ও x সমান নয় ।
ধরি [tex]x = a + m[/tex], যেখানে m একটি মূলদ রাশি ।

অতএব [tex]\begin{array}{l} a + \sqrt b = x + \sqrt y \\ \Rightarrow a + \sqrt b = a + m + \sqrt y \\\Rightarrow \sqrt b = m + \sqrt y \end{array}[/tex]
কিন্তু এটি অসম্ভব কারণ দ্বিঘাত করণীর দ্বিতীয় ধর্ম থেকে ।
অতএব a = x
আবার a = x হলে [tex]a + \sqrt b = x + \sqrt y[/tex]  থেকে পাই, [tex]\sqrt b = \sqrt y[/tex] বা b = y

 

 

 

Comments

Related Items

জটিল রাশির বর্গমূল নির্ণয় ( Square Root of Complex Numbers)

1 এর ঘনমূল নির্ণয় (To find the Cube Roots of Unity), 1 এর ঘনমূলের তিনটি ধর্ম (Three Properties of Cube Root of Unity), 1 এর অবাস্তব ঘনমূল দুটি একটি অন্য টির বর্গ , 1 এর ঘনমূল তিনটির সমষ্টি শূন্য হয়

জটিল রাশির সংক্ষিপ্তকরণ ( Complex Numbers Summary )

(1) দুটি বাস্তব রাশি x এবং y এর ক্রমযুগলকে (x , y) যদি x + iy আকারে প্রকাশ করা হয়, (2) দুটি জটিল রাশিকে একে অন্যটির প্রতিযোগী বা অনুবন্দি জটিল রাশি বলা হয়। (3) দুটি জটিল রাশির যোগফল , বিয়োগফল , গুণফল ও ভাগফলকে X + iY আকারে প্রকাশ করা যায়। যেখানে X , Y বাস্তব ।

বাস্তব সংখ্যা (Real Number)

সূচনা ( Introduction ), সংখ্যা (Number), স্বাভাবিক সংখ্যা (Natural Number), পূর্ণসংখ্যা বা অখন্ড সংখ্যা (Integers), মূলদ সংখ্যা (Rational Numbers), শূন্য দ্বারা ভাগ (Division by Zero)

দ্বিঘাত করণী (Quadratic Surds)

করণীর বিভিন্ন আকার (Different types of Surds) , করণীর ক্রম ( Order of Surds ), করণীর সরলতম আকার ( Simple form of Surds ), অনুবন্দি বা পূরককরণী ( Conjugate or Complementary Surds ) ...

সীমা ( Limit )

স্পষ্টত x এর মান 1 না হয়ে 1 এর খুব কাছাকাছি হলে f(x) এর মান 2 এর খুব নিকটবর্তী হয়। এই পর্যবেক্ষন থেকে গণিতবিদগণ সসীম ধারণার ( concept of limit ) অবতারণা করেন। বস্তুত সীমা নির্ধারণ এমন একটি প্রক্রিয়া যার মাধ্যমে অপেক্ষকের অসংজ্ঞাত