Solved Problem on Beams

Submitted by tushar pramanick on Tue, 07/23/2013 - 12:50

GATE 2013 : Civil Engineering

Q. A uniform beam (EI=constant) PQ in the form of a quarter-circle of radius R is fixed at end P and free at the end Q, where a load W is applied as shown. The vertical downward displacement, δp,  at the loaded point Q is given by: [tex]{\delta _p} = \beta (\frac{{W{R^3}}}{{EI}})[/tex]. Find the value of β (correct to 4-decimal places). __________

 

 

 

Ans: 0.785 to 0.786

Comments

Related Items

Solved Problem on hinged Joints

A hinged gate of length 5 m, inclined at 30° with the horizontal and with water mass on its left, is shown in the figure below. Density of water is 1000 kg/m3...

Solved Problem on Gear Trains

A compound gear train with gears P, Q, R and S has number of teeth 20, 40, 15 and 20, respectively. Gears Q and R are mounted on the same shaft as shown in the figure below. The diameter of the gear Q is twice that of the gear R..

Solved Problem on Heat Transfer

Consider one-dimensional steady state heat conduction, without heat generation, in a plane wall; with boundary conditions as shown in the figure below. The conductivity of the wall is given by k = k0 + bT ..

Solved Problem on Sliding Contact Bearings

Q. A link OB is rotating with a constant angular velocity of 2 rad/s in counter clockwise direction and a block is sliding radially outward on it with an uniform velocity of 0.75 m/s with respect to the rod..

Solved Problem on Strength of Materials

A rod of length L having uniform cross-sectional area A is subjected to a tensile force P as shown in the figure below. If the Young’s modulus of the material varies linearly from E1 to E2 along the length of the rod, the normal stress developed at the section-SS is