We have Trigonometric fourier series,
f(t)=a0+a1cosωt+a2cos2ωt+....+ancosnωt+b1sinωt+b2sin2ωt+....+bnsinnωt=a0+∞∑n=1(ancosnωt+bnsinnωt)
We know that,
sinnωt=ejnωt−e−jnωt2j
and cosnωt=ejnωt+e−jnωt2
Thus,
f(t)=a0+∞∑n=1[an(ejnωt+e−jnωt)2+bn(ejnωt−e−jnωt)2j]=a0+∞∑n=1[(an−jbn2)ejnωt+(an+jbn2)e−jnωt]
Let, C0=a0Cn=an−jbn2C−n=an+jbn2
And the series becomes,
f(t)=C0+∞∑n=1[Cnejnωt+C−ne−jnωt]
This is the exponential form of the Fourier series.
Now ,
Cn=an−jbn2=1TT∫0f(t)(cosnωt−jsinnωt)dt=1TT∫0f(t)e−jnωtdt
This equation is valid for both positive, negative and zero values of n.
- 251 views