Exponential Form of Fourier Series

Submitted by Sudeepta Pramanik on Wed, 07/20/2011 - 14:16

We have Trigonometric fourier series,

f(t)=a0+a1cosωt+a2cos2ωt+....+ancosnωt+b1sinωt+b2sin2ωt+....+bnsinnωt=a0+n=1(ancosnωt+bnsinnωt)

We know that,

                       sinnωt=ejnωtejnωt2j

and                  cosnωt=ejnωt+ejnωt2

Thus,

f(t)=a0+n=1[an(ejnωt+ejnωt)2+bn(ejnωtejnωt)2j]=a0+n=1[(anjbn2)ejnωt+(an+jbn2)ejnωt]

Let, C0=a0Cn=anjbn2Cn=an+jbn2

And the series becomes,

f(t)=C0+n=1[Cnejnωt+Cnejnωt]

This is the exponential form of the Fourier series.

Now ,

Cn=anjbn2=1TT0f(t)(cosnωtjsinnωt)dt=1TT0f(t)ejnωtdt

This equation is valid for both positive, negative and zero values of n.