C(s)R(s)=G(s)1+G(s)
G(s)=ω2ns(s+2ζωn)
C(s)R(s)=(ω2ns(s+2ζωn))1+(ω2ns(s+2ζωn))=ω2ns2+2ζωns+ω2n
s2+2ζωns+ω2n=0
s=−2ωζn±√(2ζωn)2−4ω2n2=−2(ζωn±ωn√ζ2−1)2
⇒s=−ζωn±ωn√ζ2−1
C(s)=(ω2ns2+2ζωns+ω2n)R(s)
R(s)=1s
C(s)R(s)=ω2ns2+2ζωns+ω2n
C(s)R(s)=ω2ns2+ω2n
⇒C(s)=(ω2ns2+ω2n)R(s)
R(s)=1s
C(s)=(ω2ns2+ω2n)(1s)=ω2ns(s2+ω2n)
c(t)=(1−cos(ωnt))u(t)
/delta=1
C(s)R(s)=ω2ns2+2ωns+ω2n
⇒C(s)=(ω2n(s+ωn)2)R(s)
C(s)=(ω2n(s+ωn)2)(1s)=ω2ns(s+ωn)2
C(s)=ω2ns(s+ωn)2=As+Bs+ωn+C(s+ωn)2
C(s)=1s−1s+ωn−ωn(s+ωn)2
c(t)=(1−e−ωnt−ωnte−ωnt)u(t)
s2+2ζωns+ω2n={s2+2(s)(ζωn)+(ζωn)2}+ω2n−(ζωn)2
=(s+ζωn)2+ω2n(1−ζ2)
C(s)R(s)=ω2n(s+ζωn)2+ω2n(1−ζ2)
⇒C(s)=(ω2n(s+ζωn)2+ω2n(1−ζ2))R(s)
C(s)=(ω2n(s+ζωn)2+ω2n(1−ζ2))(1s)=ω2ns((s+ζωn)2+ω2n(1−ζ2))
C(s)=ω2ns((s+ζωn)2+ω2n(1−ζ2))=As+Bs+C(s+ζωn)2+ω2n(1−ζ2)
C(s)=1s−s+2ζωn(s+ζωn)2+ω2n(1−ζ2)
C(s)=1s−s+ζωn(s+ζωn)2+ω2n(1−ζ2)−ζωn(s+ζωn)2+ω2n(1−ζ2)
C(s)=1s−(s+ζωn)(s+ζωn)2+(ωn√1−ζ2)2−ζ√1−ζ2(ωn√1−ζ2(s+ζωn)2+(ωn√1−ζ2)2)
C(s)=1s−(s+ζωn)(s+ζωn)2+ω2d−ζ√1−ζ2(ωd(s+ζωn)2+ω2d)
c(t)=(1−e−ζωntcos(ωdt)−ζ√1−ζ2e−ζωntsin(ωdt))u(t)
c(t)=(1−e−ζωnt√1−ζ2((√1−ζ2)cos(ωdt)+ζsin(ωdt)))u(t)
√1−ζ2=sin(θ)
c(t)=(1−e−ζωnt√1−ζ2(sin(θ)cos(ωdt)+cos(θ)sin(ωdt)))u(t)
⇒c(t)=(1−(e−ζωnt√1−ζ2)sin(ωdt+θ))u(t)
s2+2ζωns+ω2n={s2+2(s)(ζωn)+(ζωn)2}+ω2n−(ζωn)2
=(s+ζωn)2−ω2n(ζ2−1)
C(s)R(s)=ω2n(s+ζωn)2−ω2n(ζ2−1)
⇒C(s)=(ω2n(s+ζωn)2−ω2n(ζ2−1))R(s)
C(s)=(ω2n(s+ζωn)2−(ωn√ζ2−1)2)(1s)=ω2ns(s+ζωn+ωn√ζ2−1)(s+ζωn−ωn√ζ2−1)
C(s)=ω2ns(s+ζωn+ωn√ζ2−1)(s+ζωn−ωn√ζ2−1)
=As+Bs+ζωn+ωn√ζ2−1+Cs+ζωn−ωn√ζ2−1
12(ζ+√ζ2−1)(√ζ2−1) and −12(ζ−√ζ2−1)(√ζ2−1) C(s).
C(s)=1s+12(ζ+√ζ2−1)(√ζ2−1)(1s+ζωn+ωn√ζ2−1)−(12(ζ−√ζ2−1)(√ζ2−1))(1s+ζωn−ωn√ζ2−1)
c(t)=(1+(12(ζ+√ζ2−1)(√ζ2−1))e−(ζωn+ωn√ζ2−1)t−(12(ζ−√ζ2−1)(√ζ2−1))e−(ζωn−ωn√ζ2−1)t)u(t)
- 76 views